Angular Momemtum



Classical Mechanics of One Particle Angular
Momentum

Consider a particle of mass m moving around in a circle at a distance r from
the origin.

The particle's angular momentum L with respect to the coordinate origin is
defined in classical mechanics as
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Magnitude of the total angular momentum, L

L¥ = L.L =L% + L2 + L2



Commutation Relation

Let a function f depend on Xx,y,z
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The differential volume element in Cartesian coordinates is dxdydz

The differential volume element i

n spherical polar cordinates is

dV = (r sin 0d¢)(rd0)dr = r* sin 0drdode
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One Particle orbital angular momentum eigenfunction
and eigenvalue
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We now fmd the common mgenfunctmns nf .JL2 and L , which we denote by Y. Since
these operators involve only 6 and ¢, Y is a functmn of these two coordinates:

L.Y(6,9)=bY(6,4) Y(6,8) is knousn ar
L*Y(6,¢) = cY(6,¢) < \thwj, \hasumontus
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—;ﬁ—¢[ (0)T(¢)] = bS(6)T ()

ar(4) _ib
T($) = Ac!
| LA
T(gran =A™V



The requirement that T(¢) be a single-valued function of ¢ Is

I(¢ +2m) =T(¢)

A Ei'bd;-fﬁ E:’bznjﬁ = A Eibfﬁfﬁ.

eih2m/h = 1

To satisfy ' = cos a + i sin @ = 1, we must have @ = 27m, where

m=0, 1, £2, £ [/ - Zﬁb
b =mh, m=--2,-1,012,...

T(#) = Ae™, m=0, L1, £2,...
f%ﬂ@) T(g)Ag =1L
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We now solve [.2Y = ¢V for the eigenvalues ¢ of i?
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Y70, $) = SiAO)T(¢) = \/15; Sun(O)e™

§,.,(6) are well known in mathematics, and are associated Legendre Junctions

case of / = 1 for which [({ 4+ 1) =2

L*Y™©, ¢) = 1(1+ DAY, ¢) =2R°Y"(0,¢) m=0, %I
L.Y"®,¢)=mhY"@®,¢) m=0,=£l
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(L2 = LD)Y"®, ¢) = (L; + L)Y"6, o) = R*[LA + 1) — m*]Y]" 0, ¢)

Thus, the observed values of L_z\, + L%‘ are [[(I + 1) — m*] h?. But because L_% + L% 1S
the sum of two squared terms, it cannot be negative, and so we have |

[l +1) —m* k>0

[(l+1) Emz Thus, | >+m, or, m<land m > -l

Because / and m are integers, im| <1

m=0,+1 £2, ..., %+l

So, there are 2I+1 values of m for each value of |

This result might be familiar as the condition of the magnetic quantum number associ-
ated with the hydrogen atom.
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The m = +1 component of the angular-
momentum state, / = 1. The angular

momentum describes a cone because the
x and y components cannot be specified.

L precesses about the z axis, mapping out the surface of the cone shown there.

Since we cannot specify L, and L,, the vector L can lic anywhere on the surface

of a cone whose axis i the z axis, whose altitude is m#, and whose slant height is Vi(Z + 1) %



g = cos™1
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0 is always greater than 0 since m is always less than L except when I=0

The average values of (L) and (L) are zero. This picture is in nice accord with the
uncertainty principle: by specifying L, exactly, we have a complete uncertainty in the
angle ¢ associated with L,.
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Rigid Rotator

we will discuss a simple model for a rotating diatomic molecule. This model
consists of two point masses m; and m, at fixed distances /, and /, from their

center of mass Because the distance between the two masses is fixed,
this model is referred to as the rigid-rotator model.

Center of




The kinetic energy of the rigid rotator is

l 2 l 2 l 2 2y .2
= :z-mlvl + 5’"‘2"2 = E(m fy +myl5)w

where I, the moment of inertia, is given by 1 =ml f + mzf:f

Using the fact that the location ofthe center of mass is given by m [, = m5l,
i gudd
I'=pl Prove it

where | = [, + [, (the fixed separation of the two masses) and ju 1s the reduced mass






The moment of inertia about C is defined by:

. 2 2
I =m,ri +myr3

morory +myr,r,
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M, ry, =myry = My(ro —ry)
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There 1s no potential energy term because in the absence of any external forces (e.g.,
electric ormagnetic forces) the energy of the molecule does not depend on its orientation
in space. The Hamiltonian operator of a rigid rotator is therefore just the kinetic energy

operator.

H=T=—-—V? (r constant)
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Schrodinger Equation for Rigid Rotator
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where B = h?/21 is called the rotational constant of the molecule.

¢uredtunek .
each.energy level has a degeneracy g; given by

gy =2J+1



The Rigid Rotator is a Model for a Rotating Diatomic
Molecule
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The frequencies of the pure-rotational spectral lines of a diatomic molecule are

:Z&H—JﬁzHJ+UU+2y“mr+nm=zu+1w
h 8wl

B=h/87I, J=0,1,2,...

Vv

AT



~

4 A
iz AE=8B
©
>
L
S 3 4
‘G_D
= AE=6B
a
= 2 -

2

= AE = 4B
=]

=~ 1

AE=2B

0 )

Spectrum é £ 59| LP”)Q‘LT!:"
0 2B 4B 6B 8B

~
‘I e

The energy levels and absorption transitions of a rigid rotator. The absorption transitions occur
between adjacent levels, so the absorption spectrum shown below the energy levels consists of

a scrics of equally spaced lines. The quantity B is /i/87%cl



Coordinate system for the two-particle rigid rotor.

N —
(——vi —-— V4 v{_x,y,z})u; =Ey where U = U(xy, %0,71, V2,21, Z5)

2m, © . , .
x=(g ‘?ii)d’: 2 ‘}’1)13 =(5-1)

V is function only of the relative coordinates, in this particular case V=0



A ,.) h®
= |-55V) + [-=—wv2-v
H ( 2M M ( 2 H )

The Hamiltonian can be viewed as the sum of the Hamiltonians of two
hypothetical non-interacting particles with masses M and p. The first term
represent Hamiltonian for translational kinetic energy of the hypothetical
particle of mass M located at the centre of mass. The second term represents
Hamiltonian for kinetic energy of internal motion of the hypothetical particle
of mass u subject to potential energy function V.

B dy, B E,, IS the translational Energy of a hypothetical
8m*M dx® ~ ™ particle of mass M located at the centre of mass

B2 g2 E, Is the energy of the hypothetical particle of
(—de: + v) r=E,p  mass p that subject to the same potential energy
l as the original system.

Where E=E +E and W =W, .U,



Internal motion is of two types: the distance between two particles can
change (vibration) and direction of the bond or r vector can change

(rotation)

Here, V=0
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This problem becomes equivalent to a particle of mass p constrained
to move on a surface of a sphere of radius r=I , the bond length



