

GROUP THEORY

5TH SEMESTER - LECTURE 3

BY

NILOFAR NAHID

DEPARTMENT OF MATHEMATICS
MAHARAJA MANINDRA CHANDRA COLLEGE
August 19, 2020

Theorem

If G is a finite group of order n and p is the smallest prime dividing $|G|$, then any subgroup of index p is normal but the converse is not true.

Proof. Suppose H is a subgroup of G and $[G : H] = p$. Let π_H be the permutation representation afforded by multiplication on the set of left cosets of H in G , i.e.,

$$\pi_H : G \rightarrow S_A,$$

where A be the set of all left cosets of H in G . Let $K = \ker \pi_H$

$$\begin{aligned} K = \ker \pi_H &= \{g \in G \mid \pi_H(g) = \text{identity permutation}\} \\ &= \{g \in G \mid \sigma_g(aH) = gaH = aH, \forall aH \in A\}. \end{aligned}$$

This shows that K is a subgroup of H as

$$\text{for } g \in K, \sigma_g(H) = g \cdot H = gH = H \Rightarrow g \in H.$$

Let $[H : K] = k$. Then $[G : K] = [G : H][H : K] = pk$. Since H has p left cosets, G/K is isomorphic to a subgroup of S_p by the First Isomorphism Theorem.

Group action

GROUP THEORY

Group action

Groups acting on themselves by conjugation, The class equation

Conjugacy in S_n

Proof. By Lagrange's Theorem, $pk = |G/K|$ divides $p!$. Thus $k|p!/p = (p-1)!$. But all prime divisors of $(p-1)!$ are less than p and by the minimality of p , every prime divisor of k is greater than or equal to p (if not, then there exists a prime number $p' < p$ and it divides $|G|$ contradiction). This forces $k = 1$, so $H = K$ be a normal subgroup of G .

Converse is not true

In general, a group of order n need not have a subgroup of index p . For example A_4 has no subgroup of index 2.

In this section G is any group and we first consider G acting on itself (i.e., $A = G$) by conjugation:

$$g \cdot a = gag^{-1}, \quad \forall a, g \in G,$$

where gag^{-1} is computed in the group G as usual. This definition satisfies the two axioms for a group action.

Definition.

Two elements a and b of G are said to be conjugate in G if there is some $g \in G$ such that $b = gag^{-1}$. The orbits of G acting on itself by conjugation are called the conjugacy classes of G .

Examples

1. If G is an abelian group then the action of G on itself by conjugation is the trivial action $g \cdot a = a, \forall a, g \in G$ and for each $a \in G$ the conjugacy class of a is $\{a\}$.
2. If $|G| > 1$ then, unlike the action by left multiplication, G does not act transitively on itself by conjugation because $\{e\}$ is always a conjugacy class (i.e., an orbit for this action). More generally, the one element subset $\{a\}$ is a conjugacy class if and only if $gag^{-1} = a, \forall g \in G$ if and only if a is in the center of G .

Note

If G acts on itself by conjugation and $|G| > 1$ then it does not act transitively.

Examples

In S_3 one can compute directly that the conjugacy classes are $\{e\}$, $\{(12), (13), (23)\}$ and $\{(123)(132)\}$.

As in the case of a group acting on itself by left multiplication, the action by conjugation can be generalized. If S is any subset of G , define

$$gSg^{-1} = \{gsg^{-1} \mid s \in S\}.$$

A group G acts on the set $\mathcal{P}(G)$ of all subsets of itself by defining $g \cdot S = gSg^{-1}$ for any $g \in G$ and $S \in \mathcal{P}(G)$. As above, this defines a group action of G on $\mathcal{P}(G)$. Note that if S is the one element set $\{s\}$ then $g \cdot S$ is the one element set $\{gsg^{-1}\}$ and so this action of G on all subsets of G may be considered as an extension of the action of G on itself by conjugation.

Normalizer

Let S be a subset of a group G then

$$G_S = \{g \in G \mid gSg^{-1} = S\} = N_G(S)$$

is the normalizer of S in G .

Orbit-Stabilizer lemma

Suppose G is a finite group which acts on A . For any $a \in A$, we have

$$|G| = |G_a| |O_a|,$$

where G_a be the stabilizer of a in G and O_a be the orbit.

Proof. Fix $a \in A$. We know that G_a is a subgroup of G , and it follows from Lagrange's Theorem that the number of left cosets of $H = G_a$ in G is $[G : H] = |G|/|H|$. Let \mathcal{L} denote the set of left cosets of H in G . Define a function

$$f : O_a \rightarrow \mathcal{L},$$

by

$$f(g \cdot a) = gH.$$

Group action

Proof. First, we check that f is well-defined, and at the same time check that f is injective. If $g_1, g_2 \in G$, $g_1 \cdot a = g_2 \cdot a \in O_a$ iff $(g_2^{-1}g_1) \cdot a = a$, iff $g_2^{-1}g_1 \in H = G_a$ which is equivalent to $g_2H = g_1H$. So

$$g_1 \cdot a = g_2 \cdot a$$

iff

$$f(g_1 \cdot a) = f(g_2 \cdot a),$$

and f is well-defined and injective. It is immediate that f is onto, since for any $gH \in \mathcal{L}$, $f(g \cdot a) = gH$. Now, f gives a one-to-one correspondence between elements of O_a and the left cosets of G_a in G . Thus, these are equal in number, and we have

$$|O_a| = |\mathcal{L}| = |G|/|G_a|,$$

which gives the desired result.

Group action

GROUP THEORY

Group action

Groups acting on themselves by conjugation. The class equation

Conjugacy in S_n

The Class Equation

Let G be a finite group and let g_1, g_2, \dots, g_r be representatives of the distinct conjugacy classes of G not contained in the center $Z(G)$ of G . Then

$$|G| = |Z(G)| + \sum_{i=1}^r |G : G_{g_i}|.$$

Proof. Let $x \in Z(G)$, then $O_x = \{b|b = g \cdot x\} = \{b|b = gxg^{-1}\} = \{b|b = x\} = \{x\}$. Let $Z(G) = \{e, z_2, z_3 \dots z_m\}$, let K_1, K_2, \dots, K_r be the conjugacy classes of G not contained in the center, and let g_i be a representative of K_i for each i . Then the full set of conjugacy classes of G is given by

$$\{e\}, \{z_2\}, \dots, \{z_m\}, K_1, K_2, \dots, K_r.$$

Since these partition G we have

$$\begin{aligned} |G| &= \sum_{i=1}^m 1 + \sum_{i=1}^r |K_i| \\ &= |Z(G)| + \sum_{i=1}^r |G : G_{g_i}|. \end{aligned}$$

This proves the class equation.

Applications of Class Equation:-

Theorem

If p is a prime and P is a group of prime power order p^α for some $\alpha \geq 1$, then P has a nontrivial center $Z(P) \neq 1$.

Proof. By the class equation

$$|P| = |Z(P)| + \sum_{i=1}^r |P : P_{g_i}|,$$

where

$$g_1, g_2, \dots, g_r$$

are representatives of the distinct non-central conjugacy classes. By definition, $P_{g_i} \neq P$ for $i = 1, 2, \dots, r$ so p divides $|P : P_{g_i}|$ (from orbit stabilizer lemma) Since p also divides $|P|$ it follows that p divides $|Z(P)|$ hence the center must be nontrivial.

Group action

Theorem

If $|P| = p^2$ for some prime p , then P is abelian. More precisely, P is isomorphic to either Z_{p^2} or $Z_p \times Z_p$.

Proof. Since $Z(P) \neq e$ hence, it follows that $P/Z(P)$ is cyclic and also P is abelian (check). If P has an element of order p^2 , then P is cyclic. Assume therefore that every nonidentity element of P has order p . Let x be any nonidentity element of P and let $y \in P - \langle x \rangle$. Since

$$|\langle x, y \rangle| > |\langle x \rangle| = p,$$

we must have that

$$P = \langle x, y \rangle.$$

Both x and y have order p so

$$\langle x \rangle \times \langle y \rangle = Z_p \times Z_p.$$

It now follows directly that the map

$$(x^a, y^b) \rightarrow x^a y^b$$

is an isomorphism from $\langle x \rangle \times \langle y \rangle$ to P (check). This completes the proof.

Theorem

Let σ, τ be elements of the symmetric group S_n and suppose σ has cycle decomposition

$$(a_1, a_2, \dots, a_{k_1})(b_1, b_2, \dots, b_{k_2}) \dots$$

Then $\tau\sigma\tau^{-1}$ has cycle decomposition

$$(\tau(a_1), \tau(a_2), \dots, \tau(a_{k_1}))(\tau(b_1), \tau(b_2), \dots, \tau(b_{k_2})) \dots$$

i.e., $\tau\sigma\tau^{-1}$ is obtained from σ by replacing each entry i in the cycle decomposition for σ by the entry $\tau(i)$.

Proof. Observe that if $\sigma(i) = j$, then

$$\tau\sigma\tau^{-1}(\tau(i)) = \tau(j).$$

Thus, if the ordered pair i, j appears in the cycle decomposition of σ then the ordered pair $\tau(i), \tau(j)$ appears in the cycle decomposition of $\tau\sigma\tau^{-1}$. This completes the proof.

Group action

Example:

Let $\sigma = (12)(345)(6789)$ and let $\tau = (1357)(2468)$ then

$$\tau\sigma\tau^{-1} = (34)(567)(8129).$$

Definition.

1. If $\sigma \in S_n$ is the product of disjoint cycles of lengths n_1, n_2, \dots, n_r (including its 1-cycles) then the integers n_1, n_2, \dots, n_r are called the cycle type of σ .
2. If $n \in \mathbb{Z}^+$ a partition of n is any nondecreasing sequence of positive integers whose sum is n .