
GROUP THEORY

5TH SEMESTER - LECTURE 3
BY

NILOFAR NAHID

DEPARTMENT OF MATHEMATICS
MAHARAJA MANINDRA CHANDRA COLLEGE

August 19, 2020



GROUP
THEORY

Group
action

Groups
acting on
them-
selves by
conjuga-
tion, The
class
equation

Conjugacy
in Sn

Group action

Theorem

If G is a finite group of order n and p is the smallest prime dividing |G| , then any
subgroup of index p is normal but the converse is not true.

Proof. Suppose H is a subgroup of G and [G : H] = p. let πH be the permutation
representation afforded by multiplication on the set of left cosets of H in G, i.e.,

πH : G→ SA,

where A be the set of all left cosets of H in G. Let K = kerπH

K = kerπH ={g ∈ G|πH(g) = identity permutation}
={g ∈ G|σg(aH) = gaH = aH, ∀ aH ∈ A}.

This shows that K is a subgroup of H as

for g ∈ K σg(H) = g ·H = gH = H ⇒ g ∈ H.

Let [H : K] = k. Then [G : K] = [G : H][H : K] = pk. Since H has p left cosets,
G/K is isomorphic to a subgroup of Sp by the First Isomorphism Theorem.
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Proof. By Lagrange’s Theorem, pk = |G/K| divides p!. Thus k|p!/p = (p− 1)!. But all
prime divisors of (p− 1)! are less than p and by the minimality of p, every prime divisor
of k is greater than or equal to p (if not, then there exists a prime number p′ < p and it
divides |G| contradiction). This forces k = 1, so H = K be a normal subgroup of G.

Converse is not true

In general, a group of order n need not have a subgroup of index p. For example A4

has no subgroup of index 2.
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In this section G is any group and we first consider G acting on itself (i.e., A = G) by
conjugation:

g · a = gag−1, ∀ a, g ∈ G,

where gag−1 is computed in the group G as usual. This definition satisfies the two
axioms for a group action.

Definition.

Two elements a and b of G are said to be conjugate in G if there is some g ∈ G such
that b = gag−1. The orbits of G acting on itself by conjugation are called the
conjugacy classes of G.

Examples

1. If G is an abelian group then the action of G on itself by conjugation is the trivial
action g · a = a,∀a, g ∈ G and for each a ∈ G the conjugacy class of a is {a}.

2. If |G| > 1 then, unlike the action by left multiplication, G does not act transitively on
itself by conjugation because {e} is always a conjugacy class (i.e., an orbit for this
action). More generally, the one element subset {a} is a conjugacy class if and only if
gag−1 = a, ∀g ∈ G if and only if a is in the center of G.
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Note

If G acts on itself by conjugation and |G| > 1 then it does not act transitively.

Examples

In S3 one can compute directly that the conjugacy classes are {e}, {(12), (13), (23)}
and {(123)(132)}.

As in the case of a group acting on itself by left multiplication, the action by conjugation
can be generalized. If S is any subset of G, define

gSg−1 = {gsg−1|s ∈ S}.

A group G acts on the set P(G) of all subsets of itself by defining g · S = gSg−1 for
any g ∈ G and S ∈ P(G). As above, this defines a group action of G on P(G). Note
that if S is the one element set {s} then g · S is the one element set {gsg−1} and so
this action of G on all subsets of G may be considered as an extension of the action of
G on itself by conjugation.
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Normalizer

Let S be a subset of a group G then

GS = {g ∈ G|gSg−1 = S} = NG(S)

is the normalizer of S in G.

Orbit-Stabilizer lemma

Suppose G is a finite group which acts on A. For any a ∈ A, we have

|G| = |Ga||Oa|,

where Ga be the stabilizer of a in G and Oa be the orbit.

Proof. Fix a ∈ A. We know that Ga is a subgroup of G, and it follows from Lagrange’s
Theorem that the number of left cosets of H = Ga in G is [G : H] = |G|/|H|. Let L
denote the set of left cosets of H in G. Define a function

f : Oa → L,

by
f(g · a) = gH.
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Proof. First, we check that f is well-defined, and at the same time check that f is
injective. If g1, g2 ∈ G, g1 · a = g2 · a ∈ Oa iff (g−1

2 g1) · a = a, iff g−1
2 g1 ∈ H = Ga

which is equivalent to g2H = g1H. So

g1 · a = g2 · a

iff
f(g1 · a) = f(g2 · a),

and f is well-defined and injective. It is immediate that f is onto, since for any
gH ∈ L, f(g · a) = gH. Now, f gives a one-to-one correspondence between elements
of Oa and the left cosets of Ga in G. Thus, these are equal in number, and we have

|Oa| = |L| = |G|/|Ga|,

which gives the desired result.
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The Class Equation

Let G be a finite group and let g1, g2, . . . , gr be representatives of the distinct
conjugacy classes of G not contained in the center Z(G) of G. Then

|G| = |Z(G)|+
r∑
i=1

|G : Ggi |.

Proof. Let x ∈ Z(G), then Ox = {b|b = g · x} = {b|b = gxg−1} = {b|b = x} = {x}.
Let Z(G) = {e, z2, z3 . . . zm}, let K1,K2, . . . ,Kr be the conjugacy classes of G not
contained in the center, and let gi be a representative of Ki for each i. Then the full
set of conjugacy classes of G is given by

{e}, {z2}, . . . , {zm},K1,K2, . . . ,Kr.

Since these partition G we have

|G| =
m∑
i=1

1 +

r∑
1

|Ki|

=|Z(G)|+
r∑
1

|G : Ggi |.

This proves the class equation.
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Applications of Class Equation:-

Theorem

If p is a prime and P is a group of prime power order pα for some α ≥ 1, then P has a
nontrivial center Z(P ) 6= 1.

Proof. By the class equation

|P | = |Z(P )|+
r∑
i=1

|P : Pgi |,

where
g1, g2, . . . , gr

are representatives of the distinct non-central conjugacy classes. By definition,
Pgi 6= P for i = 1, 2, . . . , r so p divides |P : Pgi | (from orbit stabilizer lemma) Since p
also divides |P | it follows that p divides |Z(P )| hence the center must be nontrivial.
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Theorem

If |P | = p2 for some prime p, then P is abelian. More precisely, P is isomorphic to
either Zp2 or Zp × Zp.

Proof. Since Z(P ) 6= e hence, it follows that P/Z(P ) is cyclic and also P is abelian
(check). If P has an element of order p2, then P is cyclic. Assume therefore that every
nonidentity element of P has order p . Let x be any nonidentity element of P and let
y ∈ P− < x > . Since

| < x, y > | > | < x > | = p,

we must have that
P =< x, y > .

Both x and y have order p so

< x > × < y >= Zp × Zp.

It now follows directly that the map

(xa, yb)→ xayb

is an isomorphism from < x > × < y > to P (check). This completes the proof.
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Theorem

Let σ, τ be elements of the symmetric group Sn and suppose σ has cycle
decomposition

(a1, a2, . . . , ak1 )(b1, b2, . . . , bk2 ) . . . .

Then τστ−1 has cycle decomposition

(τ(a1), τ(a2), . . . , τ(ak1 ))(τ(b1), τ(b2), . . . , τ(bk2 )) . . .

i.e., τστ−1 is obtained from σ by replacing each entry i in the cycle decomposition for
σ by the entry τ(i).

Proof. Observe that if σ(i) = j, then

τστ−1(τ(i)) = τ(j).

Thus, if the ordered pair i, j appears in the cycle decomposition of σ then the ordered
pair τ(i), τ(j) appears in the cycle decomposition of τστ−1. This completes the proof.
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Example:

Let σ = (12)(345)(6789) and let τ = (1357)(2468) then

τστ−1 = (34)(567)(8129).

Definition.

1. If σ ∈ Sn is the product of disjoint cycles of lengths n1, n2, . . . , nr (including its 1
-cycles) then the integers n1, n2, . . . , nr are called the cycle type of σ.

2. If n ∈ Z+ a partition of n is any nondecreasing sequence of positive integers whose
sum is n.
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