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action If G is a finite group of order n and p is the smallest prime dividing |G| , then any

subgroup of index p is normal but the converse is not true.

Proof. Suppose H is a subgroup of G and [G : H| = p. let 7y be the permutation
representation afforded by multiplication on the set of left cosets of H in G, i.e.,

g G— Sa,
where A be the set of all left cosets of H in G. Let K = kermy

K = kerng ={g € G|rp(g) = identity permutation}
={g9 € Glog(aH) = gaH = aH, YV aH € A}.

This shows that K is a subgroup of H as
forge Koy(H)=9g-H=gH=H = g€ H.

Let [H : K] = k. Then [G: K] =[G : H|[H : K| = pk. Since H has p left cosets,
G /K is isomorphic to a subgroup of S, by the First Isomorphism Theorem.
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Proof. By Lagrange’s Theorem, pk = |G/ K| divides p!. Thus k|p!/p = (p — 1)!. But all
prime divisors of (p — 1)! are less than p and by the minimality of p, every prime divisor
of k is greater than or equal to p (if not, then there exists a prime number p’ < p and it
divides |G| contradiction). This forces k = 1, so H = K be a normal subgroup of G.

Converse is not true

In general, a group of order n need not have a subgroup of index p. For example A4
has no subgroup of index 2.
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GROUP
THEORY In this section G is any group and we first consider G acting on itself (i.e., A = G) by
conjugation:
g-a=gag~', V ag€q,
Groups where gag~?! is computed in the group G as usual. This definition satisfies the two
E T axioms for a group action.
selv_es by
e Definition.
I . . . . .
g;ﬁ:xion Two elements a and b of G are said to be conjugate in G if there is some g € G such

that b = gag—'. The orbits of G acting on itself by conjugation are called the
conjugacy classes of G.

Examples

1. If G is an abelian group then the action of G on itself by conjugation is the trivial
action g - a = a,Va, g € G and for each a € G the conjugacy class of a is {a}.

2. If |G| > 1 then, unlike the action by left multiplication, G does not act transitively on
itself by conjugation because {e} is always a conjugacy class (i.e., an orbit for this
action). More generally, the one element subset {a} is a conjugacy class if and only if
gag~! = a,¥g € G if and only if a is in the center of G.
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— If G acts on itself by conjugation and |G| > 1 then it does not act transitively. I
acting on

them-

selves by

conjuga-

tion, The

class In S5 one can compute directly that the conjugacy classes are {e}, {(12), (13), (23)}
eauaton and {(123)(132)}.

As in the case of a group acting on itself by left multiplication, the action by conjugation
can be generalized. If S is any subset of G, define

gSg~" = {gsg~'|s € S}.

A group G acts on the set P(G) of all subsets of itself by defining g - S = gSg~1! for
any g € Gand S € P(G). As above, this defines a group action of G on P(G). Note
that if S is the one element set {s} then g - S is the one element set {gsg—'} and so
this action of G on all subsets of G may be considered as an extension of the action of
G on itself by conjugation.



Group action

GROUP -
THEORY Normalizer

Let S be a subset of a group G then
Gs ={g €GlgSg~! = S} = Na(5)

Groups

acting on . . .

them- is the normalizer of S'in G.

selves by ~
conjuga-

tion, The . .

class Orbit-Stabilizer lemma

equation

Suppose G is a finite group which acts on A. For any a € A, we have

|G| = |GallOal,

where G, be the stabilizer of a in G and O, be the orbit.

v

Proof. Fix a € A. We know that G, is a subgroup of GG, and it follows from Lagrange’s
Theorem that the number of left cosets of H = G, in Gis |G : H] = |G|/|H|. Let £
denote the set of left cosets of H in G. Define a function

f:0q — L,

by
f(g-a)=gH.
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Proof. First, we check that f is well-defined, and at the same time check that f is
injective. If g1,92 € G, g1 -a=ga-a € O, iff (95 g1) -a=a,iff g5 g1 € H =G,
which is equivalent to go H = g1 H. So

gir-a=g2-a

iff
(g1 -a) = f(g2-a),

and f is well-defined and injective. It is immediate that f is onto, since for any
gH € L, f(g-a) = gH. Now, f gives a one-to-one correspondence between elements
of O, and the left cosets of G, in G. Thus, these are equal in number, and we have

|0a| = |£] = |G|/|Gal,

which gives the desired result.
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The Class Equation

Let G be a finite group and let g1, g2, . . ., g» be representatives of the distinct
conjugacy classes of G not contained in the center Z(G) of G. Then

G| =1Z(G)|+ D _1G : G|
i=1

Proof. Let x € Z(G), then Oy = {b|b =g -2} = {b|b = grg~'} = {b|b = =} = {x}.
Let Z(G) ={e, 22,23 ...2m}, let K1, K>, ..., K, be the conjugacy classes of G not
contained in the center, and let g; be a representative of K; for each i. Then the full
set of conjugacy classes of G is given by

{6}7{32}7 o '7{Zm}7K17 Ka, ..., Ky.

Since these partition G we have
Gl =1+ |Kil
i=1 1

=Z(G)|+ D _ |G : Gy,l.
1

This proves the class equation.
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Groups
acting on

them by It pis a prime and P is a group of prime power order p for some > 1, then P has a
conjuga- nontrivial center Z(P) # 1.

tion, The
class

equation Proof. By the class equation

T
[Pl =1Z(P)|+_|P: Py,l,
1=1

where
g1,92,---,9r

are representatives of the distinct non-central conjugacy classes. By definition,
Py, # Pfori=1,2,...,rsopdivides |P : Py, | (from orbit stabilizer lemma) Since p
also divides | P it follows that p divides | Z(P)| hence the center must be nontrivial.
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If | P| = p? for some prime p, then P is abelian. More precisely, P is isomorphic to
either Z2 or Zp x Zp.

Proof. Since Z(P) # e hence, it follows that P/Z(P) is cyclic and also P is abelian
(check). If P has an element of order p?, then P is cyclic. Assume therefore that every
nonidentity element of P has order p . Let = be any nonidentity element of P and let
y € P— <z > .Since

|<zy>[>[<z>|=p,

we must have that
P=<uxzy>.

Both x and y have order p so
<z >X<yYy>=Zp X Zp.
It now follows directly that the map
(2% y%) = a*y
is an isomorphism from < « > x <y > to P (check). This completes the proof.
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Let o, 7 be elements of the symmetric group S, and suppose o has cycle
decomposition
(@1, @25 0 00 o @y (@15 Bmg < e o Bpy ) o o 00
Then 7o~ ! has cycle decomposition
Conjugacy (T(al)v T(G'Q)v B T(ak1 ))(T(b1)7 T(b2)7 poog T(bkz)) 000
in Sy,
i.e., o1 is obtained from o by replacing each entry i in the cycle decomposition for
o by the entry 7(2).
v

Proof. Observe that if o(i) = j, then
7'0'7'71(7'(7;)) =7(j).

Thus, if the ordered pair ¢, j appears in the cycle decomposition of o then the ordered
pair 7(i), 7(j) appears in the cycle decomposition of 7o —1. This completes the proof.
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Example:
Let o = (12)(345)(6789) and let 7 = (1357)(2468) then
Tor ™ = (34)(567)(8129).
I Definition.
1. If o € Sy, is the product of disjoint cycles of lengths n1,n2, ..., n, (including its 1
-cycles) then the integers n1,ng, ..., n, are called the cycle type of o.

2. lf n € Z* a partition of n is any nondecreasing sequence of positive integers whose
sum is n.
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