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Theorem

Let σ, τ be elements of the symmetric group Sn and suppose σ has cycle
decomposition

(a1, a2, . . . , ak1 )(b1, b2, . . . , bk2 ) . . . .

Then τστ−1 has cycle decomposition

(τ(a1), τ(a2), . . . , τ(ak1 ))(τ(b1), τ(b2), . . . , τ(bk2 )) . . .

i.e., τστ−1 is obtained from σ by replacing each entry i in the cycle decomposition for
σ by the entry τ(i).

If σ ∈ Sn is the product of disjoint cycles of lengths n1, n2, . . . , nr (including its 1
-cycles) then the integers n1, n2, . . . , nr are called the cycle type of σ.

The cycle type of a permutation is unique. For example, the cycle type of an m-cycle in
Sn is 1, 1, . . . ,m , where the m is preceded by n−m ones.

The cycle type of an 2-cycle in S3 is 1, 2 and cycle type of an 3-cycle is 3.
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Two elements of Sn are conjugate in Sn if and only if they have the same cycle type.
The number of conjugacy classes of Sn equals the number of partitions of n.

Proof. By above theorem, conjugate permutations have the same cycle type.
Conversely, let σ, ρ ∈ Sn both be of cycle type (k1, k2, . . . , kl) and we show that σ and
ρ are conjugate in Sn. Let σ and τ be written as products of disjoint cycles as

σ = α1α2 . . . αl and ρ = β1β2 . . . βl,

where αi and βi are ki−cycles. For each i let us write

αi = (ai1ai2 . . . aiki ) and βi = (bi1bi2 . . . biki ).

Now define τ by τ(aij) = bij for every i, j such that

1 ≤ i ≤ l and 1 ≤ j ≤ ki.

Hence we have ταiτ−1 = βi. So, we have

τστ−1 = (τα1τ
−1)(τα2τ

−1) . . . (ταlτ
−1) = β1β2 . . . βl = ρ.

So, any two elements of Sn with the same cycle type are in the same conjugacy class.
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Proof.Each distinct cycle type in Sn represents a distinct partition of n, and each cycle
type represents a conjugacy class. Since there is a bijection between the conjugacy
classes of Sn and the permissible cycle types (because conjugates are the same cycle
type). The result follows. The second assertion of the theorem follows, completing the
proof.

If n = 3, the partitions of 3 and corresponding representatives of the conjugacy classes
of S3 (with 1 -cycles not written) are as given in the following table:

partition of 3 Representative of Conjugacy Class

1 + 1 + 1 e
1 + 2 (12)
3 (123)
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If n = 4, the partitions of 4 and corresponding representatives of the conjugacy classes
of S4 (with 1 -cycles not written) are as given in the following table:

partition of 4 Representative of Conjugacy Class

1 + 1 + 1 + 1 e
1 + 1 + 2 (12)
2 + 2 (12)(34)
1 + 3 (123)
4 (1234)
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If n = 5, the partitions of 5 and corresponding representatives of the conjugacy classes
of S5 (with 1 -cycles not written) are as given in the following table:

partition of 5 Representative of Conjugacy Class

1 + 1 + 1 + 1 + 1 e
1 + 1 + 1 + 2 (12)
1 + 1 + 3 (123)
1 + 4 (1234)
5 (12345)
1 + 2 + 2 (12)(34)
2 + 2 (12)(34)
2 + 3 (12)(345)
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A finite group is called simple when it is nontrivial and its only normal subgroups are
the trivial subgroup and the whole group.

For instance, a finite group of prime order is simple, since it in fact has no non-trivial
proper subgroups at all (normal or not). A finite abelian group G not of prime order, is
not simple: let p be a prime factor of |G|, so G contains a subgroup of order p, which is
a normal since G is abelian and is proper since |G| > p. Thus, the abelian finite simple
groups are the groups of prime order.

Lemma 1

For n ≥ 3, An is generated by 3-cycles. For n ≥ 5, An is generated by permutations
of type (2, 2).

Lemma 2

For n ≥ 5, any two 3-cycles in An are conjugate in An.

Lemma 3

When n ≥ 5 and σ 6= e in An has conjugate σ′ 6= σ such that σ(i) = σ′(i) for some i.
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Note that two elements of the same cycle type need not be conjugate in A5.

Theorem

The group A5 is simple.

Proof. We want to show the only normal subgroups of A5 are {e} and A5. Let N be
the normal subgroup of A5 with |N | > 1. We will show N contains a 3-cycle. It follows
that N = A5 by Lemmas 1 and 2. Pick σ ∈ N with σ 6= e. The cycle structure of σ is
(abc), (ab)(cd)or(abcde) where different letters represent different numbers. Since we
want to show N contains a 3-cycle, we may suppose σ has the second or third cycle
type. In the second case, N contains

((abe)(ab)(cd)(abe)−1)(ab)(cd) = (be)(cd)(ab)(cd) = (aeb).

In the third case, N contains

((abc)(abcde)(abc)−1)(abcde)−1 = (adebc)(aedcb) = (abd).

Therefore N contains a 3-cycle, so N = A5.
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For n ≥ 5, An is simple.

Proof. We may suppose n ≥ 6. For 1 ≤ i ≤ n, let An act in the natural way on
{1, 2, . . . , n} and let Hi ⊂ An be the subgroup fixing i, so Hi ∼= An−1. By induction,
each Hi is simple. Note each Hi contains a 3-cycle. Let N be the nontrivial normal
subgroup of An. We want to show N = An. Pick σ ∈ N with σ 6= e. By lemma 3 there
is a conjugate σ′ of σ such that σ′ 6= σ and σ(i) = σ′(i) for some i. Since N is normal
in An , σ′ ∈ N. Then σ−1σ′ is a non-identity element of N which fixes i, so N

⋂
Hi is

a non-trivial subgroup of Hi. It is also a normal subgroup of Hi since N is normal in
An. Since Hi is simple,

N
⋂
Hi = Hi.

Therefore Hi ⊂ N. Since Hi contains a 3-cycle, N contains a 3-cycle and we are
done.
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One can analogously define the notion of a right group action of the group G on the
nonempty set A as a map from A×G→ A, denoted by a · g for a ∈ A and g ∈ G that
satisfies the axioms:

1. (a · g1) · g2 = a · (g1g2) ∀ a ∈ A, and g1, g2 ∈ G

2. a · e = a, ∀a ∈ A.

If G acts on itself by conjugation, then conjugation is written as a right group action
using the following notation:

ag = g−1ag, ∀ a, g ∈ G.

For arbitrary group actions it is an easy exercise to check that if we are given a left
group action of G on A then the map A×G→ A defined by a · g = g−1 · a is a right
group action. Conversely, given a right group action of G on A we can form a left group
action by g · a = a · g−1. Call these pairs corresponding group actions. Put another
way, for corresponding group actions, g acts on the left in the same way that g−1 acts
on the right. This is particularly transparent for the action of conjugation because the
”left conjugate of a by g,” namely gag−1 is the same group element as the ”right
conjugate of a by g−1 namely by ag

−1
. Thus two elements or subsets of a group are

”left conjugate” if and only if they are ”right conjugate,” and so the relation ”conjugacy”
is the same for the left and right corresponding actions.
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Definition.

Let G be a group and let p be a prime.

1. A group of order pα for some α ≥ 1 is called a p-group. Subgroups of G which are
p-groups are called p-subgroups.

2. If G is a group of order pαm, where p does not divide m, then a subgroup of order
pα is called a Sylow p-subgroup of G.

3. The set of Sylow p-subgroups of G will be denoted by Sylp(G) and the number of
Sylow p-subgroups of G will be denoted by np(G).

Theorem

If H,Kare subgroups of G and H is a subgroup of NG(K), then HK is a subgroup of
G.

Proof.We prove HK = KH. Let h ∈ H, k ∈ K. By assumption, hkh−1 ∈ K, hence

hk = (hkh−1)h ∈ KH.

This proves that HK ⊆ KH. Similarly

kh = h(h−1kh) ∈ HK

proving the reverse containment.
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Lemma

Let P ∈ Sylp(G). If Q is any p-subgroup of G, then Q ∩NG(P ) = Q ∩ P.

Proof. Let H = NG(P ) ∩Q. Since P is a subgroup of NG(P ) it is clear that
P ∩Q ≤ H, so we must prove the reverse inclusion. Since by definition H ≤ Q this is
equivalent to showing H ≤ P. We do this by demonstrating that PH is a p-subgroup of
G containing both P and H; but P is a p-subgroup of G of largest possible order, so
we must have PH = P , i.e., H ≤ P.

Since H ≤ NG(P ), hence by above theorem PH is a subgroup. Also

|PH| =
|P ||H|
|P ∩H|

.

All the numbers in the above quotient are powers of p, so PH is a p-group. Moreover,
P is a subgroup of PH so the order of PH is divisible by pα, the largest power of p
which divides |G|. These two facts force |PH| = pα = |P |. This in turn implies
P = PH and H ≤ P. This establishes the lemma.
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