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Theorem

Let o, 7 be elements of the symmetric group S,, and suppose o has cycle
decomposition

(@1,a2,...,05; )(b1,b2,...,bgy). ...
Then o7~ has cycle decomposition
(t(a1),7(a2), ..., 7(ar, ) (7(b1), 7(b2), ..., 7(bry)) - - -

i.e., 7o~ is obtained from o by replacing each entry i in the cycle decomposition for
o by the entry 7(2).

If o € S, is the product of disjoint cycles of lengths n1,na, ..., n, (including its 1
-cycles) then the integers n1, na, . .., n, are called the cycle type of o.

The cycle type of a permutation is unique. For example, the cycle type of an m-cycle in
Snis1,1,...,m , where the m is preceded by n — m ones.

v

The cycle type of an 2-cycle in S5 is 1,2 and cycle type of an 3-cycle is 3.
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Group Two elements of S, are conjugate in S, if and only if they have the same cycle type.
et The number of conjugacy classes of S,, equals the number of partitions of n.

Proof. By above theorem, conjugate permutations have the same cycle type.
Conversely, let o, p € S,, both be of cycle type (k1, k2, . .., k;) and we show that o and
p are conjugate in S,,. Let o and 7 be written as products of disjoint cycles as

o=araz...q and p=p1P2...0,
where «; and ; are k;—cycles. For each i let us write
a; = (ainaiz ... a;;) and B; = (birbia ... bik,).
Now define 7 by 7(a;;) = b;; for every 7, j such that
1<i<land 1<j<k.
Hence we have 7a;7—! = ;. So, we have
ror = (ranr YD (ragrY) . (rogm ) = B1B2 ... B = p.
So, any two elements of .S,, with the same cycle type are in the same conjugacy class.
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S Proof.Each distinct cycle type in S,, represents a distinct partition of n, and each cycle
type represents a conjugacy class. Since there is a bijection between the conjugacy
classes of S, and the permissible cycle types (because conjugates are the same cycle
type). The result follows. The second assertion of the theorem follows, completing the
proof.

If n = 3, the partitions of 3 and corresponding representatives of the conjugacy classes
of S3 (with 1 -cycles not written) are as given in the following table:

partition of 3  Representative of Conjugacy Class

14141 e
1+2 (12)
3 (123)
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If n = 4, the partitions of 4 and corresponding representatives of the conjugacy classes
of S4 (with 1 -cycles not written) are as given in the following table:

partition of 4 Representative of Conjugacy Class

14+141+1 e
1+1+42 (12)
242 (12)(34)
1+3 (123)

4 (1234)
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If n = 5, the partitions of 5 and corresponding representatives of the conjugacy classes
of S5 (with 1 -cycles not written) are as given in the following table:

partition of 5 Representative of Conjugacy Class
1+14+1+1+1 e

1+141+2 (12)

1+1+3 (123)

1+4 (1234)

5 (12345)
1+2+2 (12)(34)

242 (12)(34)

243 (12)(345)
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A finite group is called simple when it is nontrivial and its only normal subgroups are
Group the trivial subgroup and the whole group.
action

For instance, a finite group of prime order is simple, since it in fact has no non-trivial
proper subgroups at all (normal or not). A finite abelian group G not of prime order, is
not simple: let p be a prime factor of |G|, so G contains a subgroup of order p, which is
a normal since G is abelian and is proper since |G| > p. Thus, the abelian finite simple
groups are the groups of prime order.

Lemma 1

Forn > 3, A,, is generated by 3-cycles. For n > 5, A,, is generated by permutations
of type (2, 2).

V.

For n > 5, any two 3-cycles in A,, are conjugate in A,,. |

When n > 5 and o # e in A,, has conjugate ¢’ # o such that o (i) = o’ (2) for some 4.
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Note that two elements of the same cycle type need not be conjugate in As. )

The group As is simple. I

Proof. We want to show the only normal subgroups of A5 are {e} and As. Let N be
the normal subgroup of As with | V| > 1. We will show N contains a 3-cycle. It follows
that N = A5 by Lemmas 1 and 2. Pick o € N with o # e. The cycle structure of o is
(abe), (ab)(cd)or(abede) where different letters represent different numbers. Since we
want to show N contains a 3-cycle, we may suppose o has the second or third cycle
type. In the second case, N contains

Group
action

((abe)(ab)(cd)(abe) 1) (ab)(cd) = (be)(cd)(ab)(cd) = (aeb).
In the third case, N contains
((abc)(abede) (abe) ™ 1) (abede) ™1 = (adebe)(aedeb) = (abd).

Therefore N contains a 3-cycle, so N = As.
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Proof. We may suppose n > 6. For 1 < i < n, let A,, act in the natural way on
{1,2,...,n} and let H; C A, be the subgroup fixing i, so H; = A,,_;. By induction,
each H; is simple. Note each H; contains a 3-cycle. Let N be the nontrivial normal
subgroup of A,,. We want to show N = A,,. Pick o € N with o # e. By lemma 3 there
is a conjugate ¢’ of o such that o’ # o and o (i) = o’ (z) for some i. Since N is normal
in A, , o’ € N. Then o~ 1o’ is a non-identity element of N which fixes i, so N () H; is
a non-trivial subgroup of H;. It is also a normal subgroup of H; since N is normal in
A,,. Since H; is simple,

N()H;: = H;.

Therefore H; C N. Since H; contains a 3-cycle, N contains a 3-cycle and we are
done.

Forn > 5, A, is simple. I
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One can analogously define the notion of a right group action of the group G on the
nonempty set A as a map from A x G — A, denoted by a - g fora € A and g € G that
satisfies the axioms:

1.(a-g1)-92=a-(g1g2)Va€ A and g1,92 € G
2.a-e=a, Ya € A.

If G acts on itself by conjugation, then conjugation is written as a right group action
using the following notation:

ad =g tag, V a,g€G.

For arbitrary group actions it is an easy exercise to check that if we are given a left
group action of G on A then the map A x G — A definedby a-g=g~' - ais aright
group action. Conversely, given a right group action of G on A we can form a left group
actionby g - a = a - g~'. Call these pairs corresponding group actions. Put another
way, for corresponding group actions, g acts on the left in the same way that g—! acts
on the right. This is particularly transparent for the action of conjugation because the
“left conjugate of a by g, namely gag—! is the same group element as the "right
conjugate of a by g—! namely by a9 . Thus two elements or subsets of a group are
“left conjugate” if and only if they are "right conjugate,” and so the relation "conjugacy”
is the same for the left and right corresponding actions.
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Let G be a group and let p be a prime.

1. A group of order p® for some « > 1 is called a p-group. Subgroups of G which are
p-groups are called p-subgroups.

2. If G is a group of order p®m, where p does not divide m, then a subgroup of order
YIS p® is called a Sylow p-subgroup of G.

theorem

3. The set of Sylow p-subgroups of G will be denoted by Syl,(G) and the number of
Sylow p-subgroups of G will be denoted by n,(G).

Theorem

If H, Kare subgroups of G and H is a subgroup of Ng(K), then HK is a subgroup of
G.

Proof.We prove HK = KH. Leth € H,k € K. By assumption, hkh~! € K, hence
hk = (hkh™1)h € KH.

This proves that HK C K H. Similarly
kh=h(h™'kh) € HK

proving the reverse containment.
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Let P € Syl,(G). If Q is any p-subgroup of G, then @ N Ng(P) = QN P.

Syiow's Proof. Let H = N (P) N Q. Since P is a subgroup of Ng(P) it is clear that

e PN Q < H, sowe must prove the reverse inclusion. Since by definition H < @ this is
equivalent to showing H < P. We do this by demonstrating that PH is a p-subgroup of
G containing both P and H; but P is a p-subgroup of G of largest possible order, so
we must have PH = P,i.e., H < P.

Since H < N¢(P), hence by above theorem PH is a subgroup. Also

_ |PlH]
PN H|

|PH]|

All the numbers in the above quotient are powers of p, so PH is a p-group. Moreover,
P is a subgroup of PH so the order of PH is divisible by p*, the largest power of p
which divides |G|. These two facts force |PH| = p™ = |P|. This in turn implies

P = PH and H < P. This establishes the lemma.
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