

GROUP THEORY

5TH SEMESTER - LECTURE 4

BY

NILOFAR NAHID

DEPARTMENT OF MATHEMATICS
MAHARAJA MANINDRA CHANDRA COLLEGE
August 24, 2020

Theorem

Let σ, τ be elements of the symmetric group S_n and suppose σ has cycle decomposition

$$(a_1, a_2, \dots, a_{k_1})(b_1, b_2, \dots, b_{k_2}) \dots$$

Then $\tau\sigma\tau^{-1}$ has cycle decomposition

$$(\tau(a_1), \tau(a_2), \dots, \tau(a_{k_1}))(\tau(b_1), \tau(b_2), \dots, \tau(b_{k_2})) \dots$$

i.e., $\tau\sigma\tau^{-1}$ is obtained from σ by replacing each entry i in the cycle decomposition for σ by the entry $\tau(i)$.

If $\sigma \in S_n$ is the product of disjoint cycles of lengths n_1, n_2, \dots, n_r (including its 1-cycles) then the integers n_1, n_2, \dots, n_r are called the cycle type of σ .

The cycle type of a permutation is unique. For example, the cycle type of an m -cycle in S_n is $1, 1, \dots, m$, where the m is preceded by $n - m$ ones.

The cycle type of an 2-cycle in S_3 is $1, 2$ and cycle type of an 3-cycle is 3 .

Theorem

Two elements of S_n are conjugate in S_n if and only if they have the same cycle type. The number of conjugacy classes of S_n equals the number of partitions of n .

Proof. By above theorem, conjugate permutations have the same cycle type. Conversely, let $\sigma, \rho \in S_n$ both be of cycle type (k_1, k_2, \dots, k_l) and we show that σ and ρ are conjugate in S_n . Let σ and τ be written as products of disjoint cycles as

$$\sigma = \alpha_1 \alpha_2 \dots \alpha_l \text{ and } \rho = \beta_1 \beta_2 \dots \beta_l,$$

where α_i and β_i are k_i -cycles. For each i let us write

$$\alpha_i = (a_{i1} a_{i2} \dots a_{ik_i}) \text{ and } \beta_i = (b_{i1} b_{i2} \dots b_{ik_i}).$$

Now define τ by $\tau(a_{ij}) = b_{ij}$ for every i, j such that

$$1 \leq i \leq l \text{ and } 1 \leq j \leq k_i.$$

Hence we have $\tau \alpha_i \tau^{-1} = \beta_i$. So, we have

$$\tau \sigma \tau^{-1} = (\tau \alpha_1 \tau^{-1})(\tau \alpha_2 \tau^{-1}) \dots (\tau \alpha_l \tau^{-1}) = \beta_1 \beta_2 \dots \beta_l = \rho.$$

So, any two elements of S_n with the same cycle type are in the same conjugacy class.

Group action

Proof. Each distinct cycle type in S_n represents a distinct partition of n , and each cycle type represents a conjugacy class. Since there is a bijection between the conjugacy classes of S_n and the permissible cycle types (because conjugates are the same cycle type). The result follows. The second assertion of the theorem follows, completing the proof.

If $n = 3$, the partitions of 3 and corresponding representatives of the conjugacy classes of S_3 (with 1-cycles not written) are as given in the following table:

partition of 3	Representative of Conjugacy Class
$1 + 1 + 1$	e
$1 + 2$	(12)
3	(123)

Group action

If $n = 4$, the partitions of 4 and corresponding representatives of the conjugacy classes of S_4 (with 1-cycles not written) are as given in the following table:

partition of 4	Representative of Conjugacy Class
$1 + 1 + 1 + 1$	e
$1 + 1 + 2$	(12)
$2 + 2$	$(12)(34)$
$1 + 3$	(123)
4	(1234)

Group action

If $n = 5$, the partitions of 5 and corresponding representatives of the conjugacy classes of S_5 (with 1-cycles not written) are as given in the following table:

partition of 5	Representative of Conjugacy Class
$1 + 1 + 1 + 1 + 1$	e
$1 + 1 + 1 + 2$	(12)
$1 + 1 + 3$	(123)
$1 + 4$	(1234)
5	(12345)
$1 + 2 + 2$	$(12)(34)$
$2 + 2$	$(12)(34)$
$2 + 3$	$(12)(345)$

A finite group is called **simple** when it is nontrivial and its only normal subgroups are the trivial subgroup and the whole group.

For instance, a finite group of prime order is simple, since it in fact has no non-trivial proper subgroups at all (normal or not). A finite abelian group G not of prime order, is not simple: let p be a prime factor of $|G|$, so G contains a subgroup of order p , which is a normal since G is abelian and is proper since $|G| > p$. Thus, the abelian finite simple groups are the groups of prime order.

Lemma 1

For $n \geq 3$, A_n is generated by 3-cycles. For $n \geq 5$, A_n is generated by permutations of type $(2, 2)$.

Lemma 2

For $n \geq 5$, any two 3-cycles in A_n are conjugate in A_n .

Lemma 3

When $n \geq 5$ and $\sigma \neq e$ in A_n has conjugate $\sigma' \neq \sigma$ such that $\sigma(i) = \sigma'(i)$ for some i .

Note that two elements of the same cycle type need not be conjugate in A_5 .

Theorem

The group A_5 is simple.

Proof. We want to show the only normal subgroups of A_5 are $\{e\}$ and A_5 . Let N be the normal subgroup of A_5 with $|N| > 1$. We will show N contains a 3-cycle. It follows that $N = A_5$ by Lemmas 1 and 2. Pick $\sigma \in N$ with $\sigma \neq e$. The cycle structure of σ is (abc) , $(ab)(cd)$ or $(abcde)$ where different letters represent different numbers. Since we want to show N contains a 3-cycle, we may suppose σ has the second or third cycle type. In the second case, N contains

$$((abe)(ab)(cd)(abe)^{-1})(ab)(cd) = (be)(cd)(ab)(cd) = (aeb).$$

In the third case, N contains

$$((abc)(abcde)(abc)^{-1})(abcde)^{-1} = (adebc)(aedcb) = (abd).$$

Therefore N contains a 3-cycle, so $N = A_5$.

Theorem

For $n \geq 5$, A_n is simple.

Proof. We may suppose $n \geq 6$. For $1 \leq i \leq n$, let A_n act in the natural way on $\{1, 2, \dots, n\}$ and let $H_i \subset A_n$ be the subgroup fixing i , so $H_i \cong A_{n-1}$. By induction, each H_i is simple. Note each H_i contains a 3-cycle. Let N be the nontrivial normal subgroup of A_n . We want to show $N = A_n$. Pick $\sigma \in N$ with $\sigma \neq e$. By lemma 3 there is a conjugate σ' of σ such that $\sigma' \neq \sigma$ and $\sigma(i) = \sigma'(i)$ for some i . Since N is normal in A_n , $\sigma' \in N$. Then $\sigma^{-1}\sigma'$ is a non-identity element of N which fixes i , so $N \cap H_i$ is a non-trivial subgroup of H_i . It is also a normal subgroup of H_i since N is normal in A_n . Since H_i is simple,

$$N \cap H_i = H_i.$$

Therefore $H_i \subset N$. Since H_i contains a 3-cycle, N contains a 3-cycle and we are done.

Group action

One can analogously define the notion of a right group action of the group G on the nonempty set A as a map from $A \times G \rightarrow A$, denoted by $a \cdot g$ for $a \in A$ and $g \in G$ that satisfies the axioms:

1. $(a \cdot g_1) \cdot g_2 = a \cdot (g_1 g_2) \quad \forall a \in A, \text{ and } g_1, g_2 \in G$
2. $a \cdot e = a, \quad \forall a \in A.$

If G acts on itself by conjugation, then conjugation is written as a right group action using the following notation:

$$a^g = g^{-1}ag, \quad \forall a, g \in G.$$

For arbitrary group actions it is an easy exercise to check that if we are given a left group action of G on A then the map $A \times G \rightarrow A$ defined by $a \cdot g = g^{-1} \cdot a$ is a right group action. Conversely, given a right group action of G on A we can form a left group action by $g \cdot a = a \cdot g^{-1}$. Call these pairs corresponding group actions. Put another way, for corresponding group actions, g acts on the left in the same way that g^{-1} acts on the right. This is particularly transparent for the action of conjugation because the "left conjugate of a by g ," namely gag^{-1} is the same group element as the "right conjugate of a by g^{-1} " namely by $a^{g^{-1}}$. Thus two elements or subsets of a group are "left conjugate" if and only if they are "right conjugate," and so the relation "conjugacy" is the same for the left and right corresponding actions.

Definition.

Let G be a group and let p be a prime.

1. A group of order p^α for some $\alpha \geq 1$ is called a p -group. Subgroups of G which are p -groups are called p -subgroups.
2. If G is a group of order $p^\alpha m$, where p does not divide m , then a subgroup of order p^α is called a Sylow p -subgroup of G .
3. The set of Sylow p -subgroups of G will be denoted by $Syl_p(G)$ and the number of Sylow p -subgroups of G will be denoted by $n_p(G)$.

Theorem

If H, K are subgroups of G and H is a subgroup of $N_G(K)$, then HK is a subgroup of G .

Proof. We prove $HK = KH$. Let $h \in H, k \in K$. By assumption, $hkh^{-1} \in K$, hence

$$hk = (hkh^{-1})h \in KH.$$

This proves that $HK \subseteq KH$. Similarly

$$kh = h(h^{-1}kh) \in HK$$

proving the reverse containment.

Sylow's theorem

Lemma

Let $P \in Syl_p(G)$. If Q is any p -subgroup of G , then $Q \cap N_G(P) = Q \cap P$.

Proof. Let $H = N_G(P) \cap Q$. Since P is a subgroup of $N_G(P)$ it is clear that $P \cap Q \leq H$, so we must prove the reverse inclusion. Since by definition $H \leq Q$ this is equivalent to showing $H \leq P$. We do this by demonstrating that PH is a p -subgroup of G containing both P and H ; but P is a p -subgroup of G of largest possible order, so we must have $PH = P$, i.e., $H \leq P$.

Since $H \leq N_G(P)$, hence by above theorem PH is a subgroup. Also

$$|PH| = \frac{|P||H|}{|P \cap H|}.$$

All the numbers in the above quotient are powers of p , so PH is a p -group. Moreover, P is a subgroup of PH so the order of PH is divisible by p^α , the largest power of p which divides $|G|$. These two facts force $|PH| = p^\alpha = |P|$. This in turn implies $P = PH$ and $H \leq P$. This establishes the lemma.