

What do you mean by amu? Calculate the BE in Ergs, Joule, Electron Volt and Mega Electron Volt when mass defect is 1 amu.

AMU (Atomic Mass Unit): The mass of an atom is measured in terms of the atomic mass unit, which is defined to be $1/_{12}$ of the mass of a carbon-12 atom.

$$\text{So, } 1 \text{ amu} = 1 \text{ u} = \frac{12}{6.023 \times 10^{23}} \times \frac{1}{12} = 1.6605 \times 10^{-24} \text{ g} = 1.6605 \times 10^{-27} \text{ kg}$$

From the Einstein's theory of special relativity we know that $E=MC^2$

So energy for 1 amu mass defect may be calculated as

$$BE = \Delta m C^2$$

$$\text{Or, } BE = 1.6605 \times 10^{-24} \text{ g} \times (3 \times 10^{10})^2 \text{ cm}^2 \cdot \text{sec}^{-2} \quad [C \text{ (velocity of light)} = 3 \times 10^{10} \text{ cm/sec}]$$

$$\text{Or, } BE = 14.49 \times 10^{-4} \text{ Ergs} \quad \text{or } 3 \times 10^8 \text{ m/sec, and ergs} = gm \cdot cm^2 \cdot sec^{-2}$$

$$\text{Or, } BE = 14.49 \times 10^{-4} \times 10^{-7} \text{ Joule} = 1.49 \times 10^{-10} \text{ J} \quad [1 \text{ Ergs} = 10^{-7} \text{ Joule}]$$

$$\text{Or, } BE = 1.49 \times 10^{-10} \times (6.242 \times 10^{18}) \text{ eV} \quad [J = volt \times coulomb, e = 1.602 \times 10^{-19} \text{ coulome}]$$

$$\text{Or, } BE = 9.31 \times 10^8 \text{ eV} \quad 1 \text{ eV} = 1 \text{ volt} \times 1.602 \times 10^{-19} \text{ coulome} \\ = 1.602 \times 10^{-19} \text{ J} = 6.242 \times 10^{18} \text{ eV}$$

$$\text{So, } BE = 931 \text{ MeV} \quad [1 \text{ MeV} = 10^6 \text{ eV} = 1.6 \times 10^{-13} \text{ J}]$$

[Erg: An erg is the unit of energy and mechanical work in the centimetre-gram-second system of units, symbol "erg". Its name is derived from the Greek ergon, meaning "work". *An erg is the amount of work done by a force of one dyne exerted for a distance of one centimeter. In the CGS base units, it is equal to one gram centimeter-squared per second-squared*]