
Solid State



1st Law of Crystallography

In 1669, Niels Stensen (Steno), Professor of Anatomy at Copenhagen and Vicar Apostolic of the North,
compared the interfacial angles in various specimens of quartz rock crystals. An interfacial angle may
be defined as the angle between lines drawn perpendicular to two faces.

Steno found that the corresponding angles (in different crystals) were always equal.

After the invention of the contact goniometer in 1780, this conclusion was checked and extended to
other substances, and the constancy of interfacial angles has been called the "first law of
crystallography."



Second Law of Crystallography

The real foundations of crystallography may be said to date from the work of the Abbe Rene Just Hϋay,

Professor of the Humanities at the University of Paris.

In 1784, he proposed that the regular external form of crystals was a reflection of an inner regularity in the

arrangement of their constituent building units. These units were believed to be little cubes or polyhedral.



The Basis and Lattice Points

Structural unit of a crystal called the basis (or motif ). The crystal structure is generated by repeating

the basis in three dimensions. The basis may be a single atom or molecule, or it may be a small

group of atoms, molecules, or ions. Each repeated basis group has the same structure and the same

spatial orientation as every other basis group in the crystal.

The environment of each repeated unit is the same throughout the crystal (neglecting surface

effects).

For KCl the basis consists of one K+ and one Cl- ion whereas for Cu the basis is Cu atoms.

Space Lattice is a three dimensional array of points, called lattice points,  representing the 

location of the basis. Each of the points is surrounded identically by its neighbours.





Unit cell

A unit cell is the smallest array of atoms (or molecules) in the crystal such that the translational replication of

which in three dimensions generates the entire crystal. In other words, the crystal can be defined by a

repeating pattern of unit cells.

A unit cell is a parallepiped (but not
necessarily rectangular) figure from which the
entire crystal structure can be constructed by
using only translations (not reflections,
rotations, or inversions).

A unit cell can be chosen in a variety of ways, as shown
here. It is conventional to choose the cell that represents
the full symmetry of the lattice. In this rectangular lattice,
the rectangular unit cell would normally be adopted







Unit cells of 14 Bravais Lattices





Unit Cell Lattice Points

Primitive 1 
1

8
× 8

Body Centered Lattice 2
1

8
× 8 + 1

Face Centered Lattice 4
1

8
× 8 +

1

2
× 6



Miller Indices: Description of  The Orientation of a Lattice Plane

Because of the periodicity of the crystal lattice, we can view the lattice as being comprised of sets of equally spaced

parallel planes containing lattice points Although this particular description of the crystal lattice may seem to be just

another arbitrary way of looking at the crystal structure, it is important for understanding X-ray diffraction patterns

and relating these patterns to the distances and angles between atoms and molecules in the crystal.

The orientation of a crystal plane is described by its Miller indices (hkl), which are obtained by the following steps:

(1) finding the intercepts of the plane on the a, b, c axes in terms of multiples of the unit-cell lengths a, b, c;

(2) taking the reciprocals of these numbers;

(3) if fractions are obtained in step 2, multiplying the three numbers by the smallest integer that will give whole

numbers.

If an intercept is negative, one indicates this by a bar over the corresponding Miller index.

Intercept on a axis=
𝑂𝐴

𝑎

Intercept on b axis =
𝑂𝐵

𝑏

Intercept on c axis=
𝑂𝐶

𝑐



The shaded plane labeled r intercepts the a axis at a/2 and the b axis at b/2 and lies parallel to the c axis (intercept at ∞).

Step 1 gives 1/2, 1/2 , ∞
Step 2 gives 2, 2, 0. Hence the Miller indices are (220).

The plane labeled s has Miller indices (110).

The plane labeled t has intercepts 3a/2, 3b/2, ∞;

step 2 gives 2/3 ,2/3 ,0, and the Miller indices are (220).

Plane u has intercepts 2a, 2b, ∞, so step 2 gives ½ , ½, 0, and step 3 gives (110).

Also shown are a (111) plane and (100) planes. The higher the value of the Miller index h of a plane, the closer to the origin is

the a intercept of the plane.

The Miller indices are associated with a family of parallel planes separated by a distance a /h along the a axis, b/k along the b 

axis, and c/l  along the c axis. In determining the Miller indices of a set of parallel equally spaced planes, one looks at the 

intercepts of the plane closest to the origin but not containing the origin. {220} represent a set of  equally spaced parallel 

planes (220)  along with planes (110) midway between them. 

















𝑎

ℎ
𝑐𝑜𝑠𝛼 = 𝑑ℎ𝑘𝑙

𝑏

𝑘
𝑐𝑜𝑠β = 𝑑ℎ𝑘𝑙

𝑐

𝑙
𝑐𝑜𝑠γ = 𝑑ℎ𝑘𝑙

cos2α + cos2 β + cos2 γ = 1

𝑜𝑟, 𝑑ℎ𝑘𝑙
2 ℎ2

𝑎2
+

𝑘2

𝑏2
+

𝑙2

𝑐2
=1

The Separation between the Planes

Thus, the perpendicular distance between adjacent hkl planes for a orthorhombic unit 

cell is given by : 
ℎ2

𝑎2
+

𝑘2

𝑏2
+

𝑙2

𝑐2
=

1

𝑑ℎ𝑘𝑙
2

For cubic lattice : 𝑑ℎ𝑘𝑙=
𝑎

ℎ2+𝑘2+𝑙2

OD= 𝑑ℎ𝑘𝑙





Density of a Solid

Let a substance crystallizes in a cubic system  with a being the distance between two lattice points.

Volume of the cube = a3 ( If a, b and c are the lengths of its edges of the cuboid  then V=abc )

If z is the number of lattice points in the unit cell then volume occupied by each point =
𝑎3

𝑧

Thus, volume occupied by Avogadro no of points = 
𝑁𝐴𝑎

3

𝑧

If molecular weight is M then 𝜌 =
𝑀

𝑉
=

𝑀𝑧

𝑁𝐴𝑎3



𝑎 = 2𝑟, 𝑟 = 𝑟𝑎𝑑𝑖𝑢𝑠
Volume of cube=𝑎3

Volume of one particle=
4

3
𝜋𝑟3 =

4

3
𝜋

𝑎

2

3

The fraction of volume occupied=

=
4

3
𝜋

𝑎

2

3

𝑎3
=0.526

2𝑎 = 4𝑟, 𝑟 = 𝑟𝑎𝑑𝑖𝑢𝑠
Volume of cube=𝑎3

Volume of one particle=
4

3
𝜋𝑟3

=
4

3
𝜋

2𝑎

4

3

The fraction of volume occupied=

=

4

3
𝜋

2𝑎

4

3

×4

𝑎3
=0.741

3𝑎 = 4𝑟, 𝑟 = 𝑟𝑎𝑑𝑖𝑢𝑠
Volume of cube=𝑎3

Volume of one particle=
4

3
𝜋𝑟3

=
4

3
𝜋

3𝑎

4

3

The fraction of volume occupied=

=

4

3
𝜋

3𝑎

4

3

×2

𝑎3
=0.68





Hexagonal Close Packing

Hexagonal Closed Packed Structure 3D Animation - YouTube

https://www.youtube.com/watch?v=uKpr-9vmgsc


Coordination Number

6

8

12

12











X-Ray Diffraction and Bragg’sLaw

The structure of a crystal can be determined using the technique of X-ray diffraction. The wavelength of X-ray (⁓1 Å) is of

the order of the distance between the constituting atoms or molecules . Hence, crystals act as diffraction gratings for x-rays.

This was first realized by von Laue in 1912.

The method developed by the Braggs (William and his son Lawrence, who later jointly won the Nobel Prize) is the

foundation of almost all modern work in X-ray crystallography.

NB=N΄B΄  , θ= glancing angle

NB= N΄B΄= d sinθ

The path difference between the two incident rays = 

NB+N΄B΄= 2 d sinθ

If the path difference between them is integral multiple of λ

then we will get constructive interference and a bright spot.

2 d sinθ= n λ

Reflections with n = 2, 3, . . . are called second-order, third-

order, and so on;



For a set of planes to give a diffracted beam intense enough to be observed, each plane of the set must have a high density of

electrons. This requires a high density of atoms, so each plane must have a high density of lattice points. Because the

number of sets of such planes is limited, the number of values of dhkl is limited and the Bragg condition will be met only for

certain values of θ.

X-ray crystallographers prefer to write Bragg’s equation in the form

2𝑑𝑛ℎ,𝑛𝑘,𝑛𝑙𝑠𝑖𝑛𝜃 = 𝜆

For example, for a primitive cubic lattice, the n =2 diffracted beam from the (100) set of planes is considered to be the n 

=1 diffracted beam from the (200) planes, whose spacing d200 is half that of the (100) planes. Similarly, the n =3 diffracted 

beam for the (100) planes is considered to be the n = 1 diffracted beam for the (300) planes.

And 2𝑑𝑛ℎ,𝑛𝑘,𝑛𝑙



Primitive Lattices

𝑑100: 𝑑110: 𝑑111 = 𝑎:
𝑎

2
:
𝑎

3
= 1: 0.707: 0.577



Face Centered Lattices

v 𝑑200: 𝑑220: 𝑑111 =
𝑎

2
:
𝑎

2 2
:
𝑎

3
= 1: 0.707: 1.154

For n =1 and {010} planes, the x-rays reflected from adjacent (010)

planes have a path difference of one wavelength. But the path difference

between x-rays reflected from the (020) plane and x-rays reflected from

(020) plane is one-half wavelength. These waves are out of phase and

cancel. The cancellation is exact, because the number of lattice points in

plane (020) of the unit cell is the same as the number of lattice points in

plane (010) of the unit cell. For n =2, the path difference between x-rays

reflected from two parallel (020) planes is 2λ and between x-rays

reflected from two adjacent (020) and (020) planes is λ; hence, no

cancellation occurs. Putting n 3, 4, . . . , we see that, a face-centered

lattice gives 200, 400, 600, . . . reflections, but not 100, 300, 500, . . .

reflections. These missing reflections are called extinctions or

systematic absences.



Body centered Lattices

𝑑200: 𝑑110: 𝑑222 =
𝑎

2
:
𝑎

2
:
𝑎

2 3
= 1: 1.414: 0.577



1. For a primitive lattice there are no extinctions.

2. For a face-centered lattice, the only reflections that occur are those whose three

indices are either all even numbers or all odd numbers. h, k, l are all odd or even

3. For a body-centered lattice, the only reflections that occur are those for which the

sum of the indices is even. h+k+l should be even.



In order to find out the types of cubic lattice the angles at which first, second and third order
reflections take place are studied

𝑑100: 𝑑110: 𝑑111 =
𝑛𝜆

2𝑠𝑖𝑛𝜃1
:

𝑛𝜆

2𝑠𝑖𝑛𝜃2
:

𝑛𝜆

2𝑠𝑖𝑛𝜃3
=

1

𝑠𝑖𝑛𝜃1
:

1

𝑠𝑖𝑛𝜃2
:

1

𝑠𝑖𝑛𝜃3

The intensity of diffracted beams depend ypon
i) The number of extra nuclear electrons
ii) Order of diffraction



NaCl Crystal

Two interpenetrating close-packed (fcc) lattices constitutes the crystal NaCl. The positions of one lattice are occupied by

positive ions, while those of the other are occupied by negative ions. In this lattice there are 14 Na+ ions and 13 Cl- ions.

However in each unit cell their Individual no is 4. Each Cl- is surrounded by 6 Cl- ions and 12 Na+ ions.

For first order reflection, 𝒅𝟐𝟎𝟎: 𝒅𝟐𝟐𝟎: 𝒅𝟏𝟏𝟏 =
𝒂

𝟐
:

𝒂

𝟐 𝟐
:
𝒂

𝟑
= 𝟏: 𝟎. 𝟕𝟎𝟕: 𝟏. 𝟏𝟓𝟒

Since, the intensities of diffracted beam depends on number of electrons in the outermost shell and intensities

increases alternately with order for(111) plane but never can totally cancel each other. Hence the planes must

alternately consists of Na+ and Cl- ions.





KCl Crystal

KCl reveals itself as primitive cubic lattice with d=a/2 instead of face centered cubic lattice with edge length a. K+ and Cl-

are isoelectronic. Hence they have same electrons in the outermost shell and thus same diffracting power. So diffraction

from (111) plane containing only K+ ions completely cancel that from the same plane containing only Cl- ions. So we get

diffraction from (222) plane instead of (111) plane. Thus,

𝑑200: 𝑑220: 𝑑222 =
𝑎

2
:

𝑎

2 2
:

𝑎

2 3
= 1: 0.707: 0.577


