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15t Law of Crystallography

In 1669, Niels Stensen (Steno), Professor of Anatomy at Copenhagen and Vicar Apostolic of the North,
compared the interfacial angles in various specimens of quartz rock crystals. An interfacial angle may
be defined as the angle between lines drawn perpendicular to two faces.

Steno found that the corresponding angles (in different crystals) were always equal.

After the invention of the contact goniometer in 1780, this conclusion was checked and extended to
other substances, and the constancy of interfacial angles has been called the "first law of

crystallography."



Second Law of Crystallography

The real foundations of crystallography may be said to date from the work of the Abbe Rene Just Hvay,
Professor of the Humanities at the University of Paris.

In 1784, he proposed that the regular external form of crystals was a reflection of an inner regularity in the
arrangement of their constituent building units. These units were believed to be little cubes or polyhedral.



The Basis and Lattice Points

Structural unit of a crystal called the basis (or motif ). The crystal structure is generated by repeating
the basis in three dimensions. The basis may be a single atom or molecule, or it may be a small
group of atoms, molecules, or ions. Each repeated basis group has the same structure and the same
spatial orientation as every other basis group in the crystal.

The environment of each repeated unit is the same throughout the crystal (neglecting surface
effects).

For KCI the basis consists of one K* and one CI-ion whereas for Cu the basis is Cu atoms.

Space Lattice is a three dimensional array of points, called lattice points, representing the
location of the basis. Each of the points is surrounded identically by its neighbours.
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Unit cell

A unit cell is the smallest array of atoms (or molecules) in the crystal such that the translational replication of
which in three dimensions generates the entire crystal. In other words, the crystal can be defined by a

repeating pattern of unit cells.
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A unit cell is a parallepiped (but not
necessarily rectangular) figure from which the
entire crystal structure can be constructed by
using only translations (not reflections,
rotations, or inversions).

N

A unit cell can be chosen in a variety of ways, as shown
here. It is conventional to choose the cell that represents
the full symmetry of the lattice. In this rectangular lattice,
the rectangular unit cell would normally be adopted



(@) A two-dimensional centered
latice. (§) The same lattice
dividied nbo primitive it cells.



(a) (b)

(a) The general shape of a unit cell. We take the bottom left corner of the unit cell to be the

origin of the a, b, ¢ coordinate system. The unit cell is defined by a, b, and c, its length along
the a, b, and ¢ axes, respectively, and the angles «, 8, and y between pairs of axes. (b) By

replicating the unit cell in three dimensions, a crystal lattice is generated.



Unit cells of 14 Bravais Lattices
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/ The lattice point shiown 1s shared
bw fouwur uwnit cells at the same lewvel
and four more unit cells (not
shown) immediatelsy abowve.

Unit Cell Lattice Points
Primitive 1 (l X 8)
8

Body Centered Lattice 2(% % 8 + 1)

Face Centered Lattice 4(1 X 8 4 = X 6)
8 2



Miller Indices: Description of The Orientation of a Lattice Plane

Because of the periodicity of the crystal lattice, we can view the lattice as being comprised of sets of equally spaced
parallel planes containing lattice points Although this particular description of the crystal lattice may seem to be just
another arbitrary way of looking at the crystal structure, it is important for understanding X-ray diffraction patterns
and relating these patterns to the distances and angles between atoms and molecules in the crystal.

The orientation of a crystal plane is described by its Miller indices (hkl), which are obtained by the following steps:
(1) finding the intercepts of the plane on the a, b, ¢ axes in terms of multiples of the unit-cell lengths a, b, c;

(2) taking the reciprocals of these numbers;

(3) if fractions are obtained in step 2, multiplying the three numbers by the smallest integer that will give whole
numbers.

If an intercept is negative, one indicates this by a bar over the corresponding Miller index.

. O0A
Intercept on a axis==-

. OB
Intercept on b axis ="

. 0C
Intercept on ¢ axis=—

a
Fig. I3.l(.\éCrystal axes. —5:2 o bB - O~C_



The shaded plane labeled r intercepts the a axis at a/2 and the b axis at b/2 and lies parallel to the ¢ axis (intercept at o).
Step 1 gives 1/2,1/2 , oo

Step 2 gives 2, 2, 0. Hence the Miller indices are (220).

The plane labeled s has Miller indices (110).

The plane labeled t has intercepts 3a/2, 3b/2, oo; ) \“}Um;(;&g ) Fb% ) qa—b/% ) A
step 2 gives 2/3,2/3 ,0, and the Miller indices are (220).

Plane u has intercepts 2a, 2b, o=, so step 2 gives ¥, %, 0, and step 3 gives (110).
Also shown are a (111) plane and (100) planes. The higher the value of the Miller index h of a plane, the closer to the origin is
the a intercept of the plane. ‘

The Miller indices are associated with a family of parallel planes separated by a distance a /h along the a axis, b/k along the b
axis, and ¢/l along the c axis. In determining the Miller indices of a set of parallel equally spaced planes, one looks at the
intercepts of the plane closest to the origin but not containing the origin. {220} represent a set of equally spaced parallel
planes (220) along with planes (110) midway between them.
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The Separation between the Planes % cosa = dpy
A OD= dhkl

b
p cosP = dyy;

C

¢
l

cosy = dpp;
cos?a + cos? B+ cos?y =1
hZ k2 lZ
‘ OT" d}zlkl (_ + ﬁ + )=1

a? c?2

Thus, the perpendicular distance between adjacent hkl planes for a orthorhombic unit
- . ) h2 kz lZ 1
cell is given by : (a— + =+ _)

2

2] 42
c“/ dpgg
a

For cubic lattice : d; ;) =——
kU™ p2 3,2 412



Consider an orthorbombic unit cell with dimensions a = 487 pm, & = 646 pm, and
¢ = 415 pm. Calculate the perpendicular distance between (a) the 110 planes and (b)
the 222 planes of this crystal.



Density of a Solid

Let a substance crystallizes in a cubic system with a being the distance between two lattice points.

Volume of the cube = a3 (If a, b and c are the lengths of its edges of the cuboid then V=abc)

3
If z is the number of lattice points in the unit cell then volume occupied by each point :a;

NAa3

Thus, volume occupied by Avogadro no of points =

Mz
Nga3

If molecular weight is M then p = % =



K

a = 2r,r = radius
Volume of cube=a3

3:

.4
Volume of one partlcle=§nr

o (3)
_71' f—
3 2

The fraction of volume occupied=

3
G 4526

a3

V2a = 4r,r = radius
Volume of cube=a3

.4
Volume of one partlcle=§ rs

_4 V2a ’
(%)

The fraction of volume occupied=
3
in(@) %4

3 4

= =0.741

a3

V3a = 4r,r = radius
Volume of cube=a3

.4
Volume of one partlcle=§ rs

_4 V3a ’
(%)

The fraction of volume occupied=
fn_<\/§a

_3

2 )BXZ=O.68

a3




Fig. 20.32 The first layer of close-packed
spheres used to build a three-dimensional
close-packed structure.

Fig. 20.33 The second layer of close-packed
spheres occupies the dips of the first layer.
The two layers are the AB component of
the close-packed structure.

Fig. 20.34 (a) The third layer of close-packed
spheres might occupy the dips lying
directly above the spheres in the first layer,
resulting in an ABA structure, which
corresponds to hexagonal close-packing.
(b) Alternatively, the third layer might lie
in the dips that are not above the spheres

in the first layer, resulting in an ABC
structure, which corresponds to cubic
close-packing

(a)

(b)

Fig. 20.35 A fragment of the structure
shown in Fig. 20.34 revealing the (a)
hexagonal (b) cubic symmetry. The tints
on the spheres are the same as for the layers
in Fig. 20.34.



Hexagonal Close Packing

Hexagonal Closed Packed Structure 3D Animation - YouTube
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https://www.youtube.com/watch?v=uKpr-9vmgsc

cubic

Coordination Number

body-centered cubic

face-centered cubic

12

hexagonal close-packing

12




5.NO TETRAHEDRAL VOIDS OCTAHEDEAL VOIDS
1 When a sphere of second layer (b) 1s When a sphere of second layer (b)
above the void m the first layer (a), partially covers the void in the first layer
tetrahedral void 1s formed (a), octahedral void is formed
o """;;‘:"“' ahedral
i ®<_——I3Tera
S — layera
x‘\
layerk layer b
2 If the number of close packed spheres If the mimber of close packed spheres
be ‘n’ then the number of tetrahedral be *n’ then, the number of octahedral
voids generated 1s equal to 2n. voids generated 1s equal ton
3 This constitutes four spheres, three n This constitutes six spheres, three in the
the lower laver (a) and one in the upper | lower layer (a) and three in the
layer (b). upper layer (b)
4 | When the centers of these four spheres | When the centers of these six spheres

are joined, a tetrahedron is formed.

are joined, an octahedron 1s formed.




VUILIUUD 111 1 U\u
Both octahedral and tetrahedral voids are present in FCC crystal.

o

Tetrahedral Void

Co-ordinates of the voids =

(%, %4, Y4}, {%, %, %3] + {2, %, 0}

Position of voids = % way along body diagonal
+ face centering translations

Voids per cell =8
(2 on each body diagonal * 4 body diagonals )

Voids per atom =8/4 = 2

\Y =4V

tetrahedron cell

rvoid/ ratom =0.225

Octahedral Void

Co-ordinates of the voids =

(%2, Y2, Y2} + {4, Y, 0}

Position of voids = body centre +
face centering translations

Voids per cell = 4
(body-centre = 1) + (edge-centre = 12/4)

Voids peratom=4/4=1
=1
octahedron / 6 vcell

rvoid/ P = 0.4142




Voids in BCC

There are NO voids in BCC crystal which have the shape of a regular polyhedron.
The voids in BCC crystals are non-regular or distorted octahedral and tetrahedral voids.

The distorted octahedral voids is in a sense a ‘linear void’; that means an sphere of correct
size sitting in the voids touches only two of the six atoms surrounding it.

~,

T 1 7

/4

Non-regular Tetrahedral Void

Co-ordinates of the void =

{2, %, 0 }

Position of voids = on each faces

Voids per cell =12
(4/2 voids * 6 faces )

Voids peratom=12/2=6

=0.29

G
void atom

Non-regular Octahedral Void

Co-ordinates of the void =

{1, %, 0} & {1, 0, 0}

Position of voids = center of faces & edges

Voids per cell =6
(face-centre = 6/2) + (edge-centre = 12/4)

Voids peratom=6/2 =3

=0.155

r / r
void atom




Structure Element

hecp* Be, Cd, Co, He, Mg, 5¢, Ti, Zn

fcc* (ccp, cubic F) Ag, Al, Ar, Au, Ca, Cu, Kr, Ne, Ni, Pd, Pb, Pt, Rh, Rn, Sr, Xe
boc (cubic I) Ba, Cs, Cr, Fe, K, Li, Mn, Mo, Rb, Na, Ta, W,V

tubic P Po

* Close-nacked strnctures



X-Ray Diffraction and Bragg’sLaw

The structure of a crystal can be determined using the technique of X-ray diffraction. The wavelength of X-ray (~1 A) is of
the order of the distance between the constituting atoms or molecules . Hence, crystals act as diffraction gratings for x-rays.
This was first realized by von Laue in 1912.

The method developed by the Braggs (William and his son Lawrence, who later jointly won the Nobel Prize) is the
foundation of almost all modern work in X-ray crystallography.

NB=N'B’ , 6= glancing angle

A C
Incident x-rays Diffracied x-rays
A A A C’ NB=N"B’=d sinf
" The path difference between the two incident rays =
‘ A< NB+N'B’=2 d sinf
e-B 5 )
o ~ ° \ If the path difference between them is integral multiple of A
| ™ @ W then we will get constructive interference and a bright spot.
3 B’ 2dsind=nA
] _ Reflections with n = 2, 3, . . . are called second-order, third-
Atomic-scale crystal lattice planes
order, and so on;




For a set of planes to give a diffracted beam intense enough to be observed, each plane of the set must have a high density of
electrons. This requires a high density of atoms, so each plane must have a high density of lattice points. Because the
number of sets of such planes is limited, the number of values of dwis limited and the Bragg condition will be met only for

certain values of 6.
X-ray crystallographers prefer to write Bragg’s equation in the form

Zdnh,nk,nlSine =A

For example, for a primitive cubic lattice, the n =2 diffracted beam from the (100) set of planes is considered to be the n
=1 diffracted beam from the (200) planes, whose spacing dxois half that of the (100) planes. Similarly, the n =3 diffracted
beam for the (100) planes is considered to be the n = 1 diffracted beam for the (300) planes.

And 2 dnh,nk,nl>/ >\



Primitive Lattices
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Face Centered Lattices
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For n =1 and {010} planes, the x-rays reflected from adjacent (010)
planes have a path difference of one wavelength. But the path difference
between x-rays reflected from the (020) plane and x-rays reflected from
(020) plane is one-half wavelength. These waves are out of phase and
cancel. The cancellation is exact, because the number of lattice points in
plane (020) of the unit cell is the same as the number of lattice points in
plane (010) of the unit cell. For n =2, the path difference between x-rays
reflected from two parallel (020) planes is 2A and between Xx-rays
reflected from two adjacent (020) and (020) planes is A; hence, no
cancellation occurs. Putting n 3, 4, . . ., we see that, a face-centered
lattice gives 200, 400, 600, . . . reflections, but not 100, 300, 500, . . .
reflections. These missing reflections are called extinctions or
systematic absences.

a a a
dZOO: d220: d111 = Eﬁﬁ = 1:0.707: 1154



Body centered Lattices

a
d200: d110: d222 = PR \/_—
) M

= 1:1.414:0.577

ﬂ\




1. For a primitive lattice there are no extinctions.

2. For a face-centered lattice, the only reflections that occur are those whose three
Indices are either all even numbers or all odd numbers. h, k, | are all odd or even

3. For a body-centered lattice, the only reflections that occur are those for which the
sum of the indices is even. h+k+l should be even.



In order to find out the types of cubic lattice the angles at which first, second and third order
reflections take place are studied

nA nA nA 1 1 1

d100: d110: di11 =

2sinf, : 2sinf, : 2sinf3  sin6, :Sinez :Sin93

The intensity of diffracted beams depend ypon
i) The number of extra nuclear electrons
i) Order of diffraction



NaCl Crystal

Two interpenetrating close-packed (fcc) lattices constitutes the crystal NaCl. The positions of one lattice are occupied by
positive ions, while those of the other are occupied by negative ions. In this lattice there are 14 Na*ions and 13 CI- ions.
However in each unit cell their Individual no is 4. Each CI- is surrounded by 6 CI- ions and 12 Na* ions.

a a a

For first order reflection, dygo: d20: d111 = 29 B 1:0.707:1.154

Since, the intensities of diffracted beam depends on number of electrons in the outermost shell and intensities

increases alternately with order for(111) plane but never can totally cancel each other. Hence the planes must
alternately consists of Na*and ClI- ions.

w
Lo®
lo*

= o - &
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KCI Crystal

KCI reveals itself as primitive cubic lattice with d=a/2 instead of face centered cubic lattice with edge length a. K*and CI-
are isoelectronic. Hence they have same electrons in the outermost shell and thus same diffracting power. So diffraction
from (111) plane containing only K* ions completely cancel that from the same plane containing only CI- ions. So we get

diffraction from (222) plane instead of (111) plane. Thus,
= 1:0.707:0.577

N|Q

dzooi d2205 dypp =

ﬁ|
ﬁ|

+ ~e—— potassium ion
(K)

— |- chloride ion

(CI7)




