SOLID STATE CHEMISTRY: STUDY MATERIAL AND
NUMERICAL PROBLEMS

INTRODUCTION AND TYPES OF SOLIDS

The solid state is one of the fundamental states of matter. Solids are characterized
by their definite shape, volume, and rigidity due to the strong intermolecular forces
holding their constituent particles (atoms, molecules, or ions) in fixed positions.

Types of Solids:

* Crystalline Solids: Particles are arranged in a regular, repeating three-
dimensional pattern called a crystal lattice. They have sharp melting points
and anisotropic properties. Examples: NaCl, Diamond, Quartz.

* Amorphous Solids: Particles are arranged randomly. They do not have sharp
melting points and are isotropic. Examples: Glass, Rubber, Plastic.

Categorization of Crystalline Solids:

* Ionic Solids: Composed of ions held together by electrostatic forces. (e.g.,
NaCl, MgO)

* Covalent Solids: Atoms are held together by covalent bonds in a continuous
network. (e.g., Diamond, SiC)

* Molecular Solids: Molecules are held together by weak van der Waals forces
or hydrogen bonds. (e.g., Ice (HZO), Dry Ice (COZ))

* Metallic Solids: Metal atoms are held together by metallic bonds, forming a
lattice of cations surrounded by a 'sea' of delocalized electrons. (e.g., Iron,
Copper)

LAWS OF CRYSTALLOGRAPHY
These laws describe the geometrical properties of crystals.
1. Steno's Law (Law of Constancy of Interfacial Angles)

Introduced by Nicolaus Steno, this law states that the angle between
corresponding faces of a crystal of a particular substance is always constant,



regardless of the size or shape of the crystal. This angle is called the interfacial
angle.

2. Hauy's Law (Law of Rational Indices)

Proposed by Abbé René Just Hally, this law states that the intercepts made by any
face of a crystal on the crystallographic axes are always integral multiples of certain
unit lengths along those axes. These integral multiples are called the parameters of
the face, and their reciprocals, when reduced to the smallest integers, give the
Miller indices of the face.

CRYSTALLOGRAPHIC SYMMETRY

Crystals possess internal symmetry due to the regular arrangement of their
constituent particles.

Elements of Symmetry:

* Axis of Rotation: An imaginary line about which a crystal can be rotated so
that it presents an identical appearance more than once in a full $360/\circ$
rotation. Permissible axes are 2-fold, 3-fold, 4-fold, and 6-fold.

* Plane of Symmetry: An imaginary plane that divides a crystal into two
identical halves, one being the mirror image of the other.

* Center of Symmetry: An imaginary point within the crystal such that lines
drawn from this point to each atom/ion pass through an identical atom/ion
equidistant on the opposite side.

Permissible Symmetry Axes:

Only axes of 2, 3, 4, and 6-fold symmetry are possible in crystals. A 5-fold axis of
symmetry is not permissible because it does not allow for space-filling without
leaving gaps.

LATTICE, SPACE LATTICE, AND UNIT CELL

Lattice: A regular, three-dimensional arrangement of points in space, each of which
has identical surroundings. It is an abstract concept representing the framework of
a crystal.

Space Lattice: A lattice in three dimensions.



Unit Cell: The smallest repeating structural unit of a crystal lattice that, when
translated in three dimensions, generates the entire crystal structure.

Crystal Systems and Bravais Lattices:

There are 7 crystal systems (cubic, tetragonal, orthorhombic, monoclinic, triclinic,
hexagonal, rhombohedral) and 14 Bravais lattices, which represent all possible
unique arrangements of points in a crystal lattice.

Crystal Planes:

These are imaginary planes passing through lattice points in a crystal. They are
defined by Miller indices.

PACKING OF UNIFORM HARD SPHERES

Describes how spheres (representing atoms or ions) are arranged in a crystal
structure to maximize packing efficiency.

Close-Packed Arrangements:

* Hexagonal Close-Packed (hcp): Stacking sequence ABCABC... or ABABAB...
gives an ABAB... pattern. Coordination number = 12. Packing efficiency $
\approx 74\%$.

* Face-Centered Cubic (fcc): Stacking sequence ABCABC... gives an ABCABC...
pattern. Coordination number = 12. Packing efficiency $\approx 74\%$.

Coordination Number:
The number of nearest neighbors to an atom/ion in the crystal structure.
Packing Efficiency:

The fraction of the total volume occupied by the spheres.



TETRAHEDRAL AND OCTAHEDRAL VOIDS

Gaps or interstitial spaces within a crystal lattice formed by the arrangement of
atoms/ions.

* Tetrahedral Void: A void surrounded by four atoms/ions in a tetrahedral
arrangement. The radius ratio ($r_{void}/r_{atom}$) is approximately 0.225.

* Octahedral Void: A void surrounded by six atoms/ions in an octahedral
arrangement. The radius ratio ($r_{void}/r_{atom}$) is approximately 0.414.

Void Space in Cubic Systems:

* Simple Cubic (SC): 1 tetrahedral void and 0 octahedral voids per unit cell
(conceptually, not typically found in real solids).

* Body-Centered Cubic (BCC): 6 tetrahedral voids and 3 octahedral voids per
unit cell.

* Face-Centered Cubic (FCC): 8 tetrahedral voids and 4 octahedral voids per
unit cell.

INDEXING OF PLANES AND MILLER INDICES

Miller indices are a notation system used to describe the orientation of planes and
directions in a crystal lattice.

Procedure for determining Miller Indices (hkl) for a plane:

1. Determine the intercepts of the plane on the crystallographic axes (x, y, z) in
terms of the unit cell edge lengths (a, b, ¢). If the plane passes through the
origin, translate it parallel to itself until it intercepts the axes.

2. Express these intercepts as fractions of the unit cell edge lengths.
3. Take the reciprocals of these fractional intercepts.

4. Clear the fractions by multiplying by the smallest common denominator to
obtain the smallest possible integers. These integers are the Miller indices
(hkl).

Example: A plane intercepts the x, y, and z axes at 2a, 3b, and 1c respectively. Intercepts
are 2, 3, 1. Reciprocals are 1/2, 1/3, 1/1. Clearing fractions (multiply by 6): 3, 2, 6. So,
Miller indices are (326).



DISTANCE BETWEEN CONSECUTIVE PLANES ($D_{HKL}$)
The distance between parallel crystal planes with Miller indices (hkl).
For Cubic Lattices:

The distance between consecutive (hkl) planes is given by:
$$d_{hkl} = \frac{fa}{\sqrt{hA2 + k"2 + ["2}}$$

Where 'a' is the edge length of the unit cell.
For Orthorhombic Lattices:

The distance between consecutive (hkl) planes is given by:
$$d_{hkl} = \frac{1}\sqrt{(\frac{h}{a})*2 + (\frac{k}{b})*2 + (\frac{l}{c})"2}}$$

Where 'a', 'b', and 'c' are the edge lengths of the unit cell along the x, y, and z axes,
respectively.

Calculation Example (Cubic):

Calculate the interplanar distance for (210) planes in a cubic crystal with edge
length $a = 400$ pm.

Here, $h=2, k=1, |=0%.

$$d_{210} = \frac{400 ext{ pm}H\sqrt{2A2 + 1A2 + 0A2}} = \frac{400 ext{ pm}}
{\sqrt{4 + 1 + 0}} = \frac{400 ext{ pm}}{\sqrt{5}} \approx \frac{400}{2.236} ext{ pm}
\approx 178.9 ext{ pm}$$

RELATION BETWEEN MOLAR MASS AND UNIT CELL DIMENSION (CUBIC
SYSTEM)

The density ($ ho$) of a crystalline solid can be related to its molar mass (M), unit
cell edge length (a), number of formula units per unit cell (Z), and Avogadro's
number ($N_A$) using the following formula:

$$ ho =\frac{Z imes M}{a"3 imes N_A}$$
Where:

* $ ho$ = density (e.g., g/cm? or kg/m?3)
* $7% = number of atoms or formula units per unit cell (e.g., Z=1 for SC, Z=2 for
BCC, Z=4 for FCC)



* $M$ = molar mass (e.g., g/mol)
* $a$ = edge length of the unit cell (e.g., cm or m). Ensure consistent units.

* $N_A$ = Avogadro's number ($6.022 imes 107 {23}$ mol'1)
Calculation Example:

A cubic crystal of a metal has an edge length of 350 pm. If its density is 8.0 g/cm?,
calculate the molar mass of the metal. Assume the unit cell is BCC (Z=2).

Given: $a = 350 ext{ pm} = 350 imes 10°{-10} ext{ cm}$, $ ho = 8.0 ext{ g/cm} 3%,
$7=2%, $N_A =6.022 imes 107 {23} ext{ mol}"\{-1}$

Rearranging the formula: $M = \frac{ ho imes a~3 imes N_A}HZ}$

$$M = \frac{8.0 ext{ g/cm}"3 imes (350 imes 107{-10} ext{ cm})A3 imes 6.022 imes
107N {23} ext{ mol}{-1}}{2}$$ $$M = \frac{8.0 imes (4.2875 imes 10/{-23} ext{ cm}"3)
imes 6.022 imes 107 {23} ext{ mol}*{-1}}{2}$$ $$M \approx \frac{206.3 ext{ g/mol}}
{2} \approx 103.15 ext{ g/mol}$$

The molar mass is approximately 103.15 g/mol.

BRAGG'S LAW OF DIFFRACTION

Bragg's law describes the condition for constructive interference of X-rays (or other
electromagnetic radiation) scattered by parallel planes of atoms in a crystal.

Statement:

Constructive interference occurs when the path difference between waves
scattered from adjacent planes is an integral multiple of the wavelength ($
\lambda$).

$$n\lambda = 2d \sin heta$$
Where:

* $n$ = order of diffraction (an integer: 1, 2, 3, ...).
* $\lambda$ = wavelength of the incident X-rays.
* $d$ = interplanar spacing between adjacent crystal planes.

* $ heta$ = glancing angle (the angle between the incident X-ray beam and the
crystal plane).



Derivation:

Consider two parallel planes of atoms in a crystal separated by a distance $d$. Let
an X-ray beam of wavelength $\lambda$ strike these planes at a glancing angle $
heta$. The beam is reflected (scattered) from both planes. For constructive
interference (a diffracted beam), the path difference between the two reflected
beams must be an integral multiple of the wavelength ($n\lambda$).

Draw a perpendicular from the point where the first beam strikes the upper plane
to the path of the second beam. Let this point be P. Let the points where the
incident and reflected beams strike the planes be A and B respectively. The path
difference is the difference between the path length BC + CD and AE, where AE is
the incident path from a reference point. However, it is more common to consider
the path difference between the rays reflected from adjacent planes.

Let ray 1 be incident at A and reflected at A'. Let ray 2 be incident at B and reflected
at B'. Rays 1 and 2 are parallel. For constructive interference, the path difference
must be $n\lambda$.

Draw a perpendicular from A to the path of ray 2 (at point C). Draw a perpendicular
from B to the path of reflected ray 1 (at point D).

The path difference is $(BC + CD) - 0%.

In the right-angled triangle formed by dropping a perpendicular from A to ray 2 (at
C) and considering the path from A to B and then C:

Consider ray 1 striking plane 1 at A, and ray 2 striking plane 2 at B. Let the angle
between the incident ray and the plane be $ heta$. Then the angle between the
incident ray and the normal to the plane is $90A\circ - heta$.

Let the reflected rays be $r_1%$ and $r_2$. For constructive interference, the path
difference between $r_1$ and $r_2$ must be $n\lambdas.

Draw a perpendicular from A to the path of ray 2, meeting at C. Also, draw a
perpendicular from B to the path of the reflected ray 1, meeting at D.

The path difference is $(BC + CD)$.

In the right-angled triangle ABC, $\angle ABC = 90/\circ$. The angle between the
incident ray and the plane is $ heta$. The angle of incidence with the normal is
$90/\circ - heta$.

In triangle ABC (where AC is the path difference along the normal), consider the
incident ray and the reflected ray. The angle of incidence with the normal is $
heta$, and the angle of reflection is $ heta$.



From A, drop a perpendicular to the path of ray 2 at C. Then $BC = d \sin heta$.

From B, drop a perpendicular to the path of reflected ray 1 at D. Then $AD =d \sin
heta$.

The path difference between ray 1 and ray 2 is $BC + AD$ (or $BC+CD% if we
consider the ray entering at B and reflecting at B', and ray entering at A and
reflecting at A).

Let's use a simpler geometry: Draw the two incident rays parallel to each other.
They strike planes at A and B. They are reflected at A' and B'. The path difference is
$(A'C + CB")$ where C is a point on the reflected ray from B such that AC is
perpendicular to it. If the angle between the incident ray and the plane is $ heta$,
then the angle between the incident ray and the normal is $(90/\circ - heta)$. The
angle of reflection is also $ heta$ from the normal. So the angle between the
reflected ray and the plane is $ heta$.

Consider the triangle formed by points A, B and the point C on the ray from B which
is perpendicular to the ray from A. The distance $d$ is the separation between
planes. The path difference $BC + CD$ equals $n\lambda$.

In $ riangle ABC$, $\angle BAC = heta$. $BC = d \sin heta$. In $ riangle ABD$, $
\angle BAD = heta$. $AD = d \sin heta$. Total path difference = $BC + AD = 2d \sin
heta$.

Thus, for constructive interference: $2d \sin heta = n\lambda$.

DETERMINATION OF CRYSTAL STRUCTURE

Several techniques are used to determine crystal structures, with X-ray diffraction
being the most common.

Powder Method (Debye-Scherrer method):

A polycrystalline sample (powder) is irradiated with monochromatic X-rays. The X-
rays are diffracted by the various sets of crystal planes according to Bragg's law.
The diffracted beams are recorded on a photographic film or by a detector as a
series of concentric rings. Each ring corresponds to a specific $d_{hkI}$ spacing and
thus a specific set of (hkl) planes. The angular positions of these rings allow for the
calculation of $d_{hklI}$ values, which can then be used to determine the unit cell
dimensions and crystal system. This method is useful for identifying unknown
substances and studying phase transitions.



STRUCTURE OF NACL AND KCL CRYSTALS

Both NaCl and KCl crystallize in the Face-Centered Cubic (FCC) lattice structure. They
are isomorphous, meaning they have the same crystal structure.

Sodium Chloride (NaCl) Structure:

* It can be viewed as an FCC lattice of $Na~+$ ions with $CI*-$ ions occupying
all octahedral voids, OR as an FCC lattice of $CIA-$ ions with $Na”+$ ions
occupying all octahedral voids.

* Each $Na”+$ ion is octahedrally surrounded by six $CIA-$ ions, and vice versa.
* The unit cell contains 4 $Na”+$ ions and 4 $CIA-$ ions (Z=4).

* The $CIN-$ ions form an FCC lattice, and the $Na”r+$ ions are located at the
$(1/2, 0, 0)$ positions (octahedral sites).

Potassium Chloride (KCl) Structure:

* Similar to NaCl, it has an FCC arrangement.
* It is also composed of $KA+$ and $CI~-$ ions.

* The structure is essentially the same as NaCl, but the relative sizes of $KA+$
and $ClIA-$ ions lead to slight differences in lattice parameters and diffraction
patterns compared to NaCl.

* The interplanar distances and unit cell parameters can differ.

NUMERICAL PROBLEMS
Problem 1: Density Calculation

A metal crystallizes in an FCC structure with an edge length of 400 pm. If the molar
mass of the metal is 100 g/mol, calculate its density. ($N_A = 6.022 imes 107{23}$

mol'1)
Problem 2: Unit Cell Edge Length

Silver (Ag) crystallizes in FCC structure. The density of Ag is 10.5 g/cm?. The molar
mass of Ag is 107.9 g/mol. Calculate the edge length of the unit cell. ($N_A = 6.022

imes 107 {23}$ mol'1)



Problem 3: Packing Efficiency

Calculate the packing efficiency of a simple cubic (SC) crystal structure, assuming
atoms are touching spheres.

Problem 4: Bragg's Law Application

When X-rays of wavelength 1.54 A are diffracted by a crystal, the first-order
diffraction peak ($n=1$%) is observed at a glancing angle of $20/\circ$. Calculate the
interplanar spacing ($d$) for the crystal planes causing this diffraction.

Problem 5: Void Calculation

In a crystalline solid, atoms of element A form an FCC lattice. Atoms of element B
occupy all the octahedral voids. If the density of the solid is 2.5 g/cm?® and the edge
length of the unit cell is 500 pm, calculate the molar mass of element B. Assume

molar mass of A is 50 g/mol. ($N_A = 6.022 imes 107 {23}$ mol'1)

Would you like to work through any of these problems, or would you like me to
generate solutions for them?
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