

SOLID STATE CHEMISTRY: STUDY MATERIAL AND NUMERICAL PROBLEMS

INTRODUCTION AND TYPES OF SOLIDS

The solid state is one of the fundamental states of matter. Solids are characterized by their definite shape, volume, and rigidity due to the strong intermolecular forces holding their constituent particles (atoms, molecules, or ions) in fixed positions.

Types of Solids:

- **Crystalline Solids:** Particles are arranged in a regular, repeating three-dimensional pattern called a crystal lattice. They have sharp melting points and anisotropic properties. Examples: NaCl, Diamond, Quartz.
- **Amorphous Solids:** Particles are arranged randomly. They do not have sharp melting points and are isotropic. Examples: Glass, Rubber, Plastic.

Categorization of Crystalline Solids:

- **Ionic Solids:** Composed of ions held together by electrostatic forces. (e.g., NaCl, MgO)
- **Covalent Solids:** Atoms are held together by covalent bonds in a continuous network. (e.g., Diamond, SiC)
- **Molecular Solids:** Molecules are held together by weak van der Waals forces or hydrogen bonds. (e.g., Ice (H₂O), Dry Ice (CO₂))
- **Metallic Solids:** Metal atoms are held together by metallic bonds, forming a lattice of cations surrounded by a 'sea' of delocalized electrons. (e.g., Iron, Copper)

LAWS OF CRYSTALLOGRAPHY

These laws describe the geometrical properties of crystals.

1. Steno's Law (Law of Constancy of Interfacial Angles)

Introduced by Nicolaus Steno, this law states that the angle between corresponding faces of a crystal of a particular substance is always constant,

regardless of the size or shape of the crystal. This angle is called the interfacial angle.

2. Haüy's Law (Law of Rational Indices)

Proposed by Abbé René Just Haüy, this law states that the intercepts made by any face of a crystal on the crystallographic axes are always integral multiples of certain unit lengths along those axes. These integral multiples are called the parameters of the face, and their reciprocals, when reduced to the smallest integers, give the Miller indices of the face.

CRYSTALLOGRAPHIC SYMMETRY

Crystals possess internal symmetry due to the regular arrangement of their constituent particles.

Elements of Symmetry:

- **Axis of Rotation:** An imaginary line about which a crystal can be rotated so that it presents an identical appearance more than once in a full 360° rotation. Permissible axes are 2-fold, 3-fold, 4-fold, and 6-fold.
- **Plane of Symmetry:** An imaginary plane that divides a crystal into two identical halves, one being the mirror image of the other.
- **Center of Symmetry:** An imaginary point within the crystal such that lines drawn from this point to each atom/ion pass through an identical atom/ion equidistant on the opposite side.

Permissible Symmetry Axes:

Only axes of 2, 3, 4, and 6-fold symmetry are possible in crystals. A 5-fold axis of symmetry is not permissible because it does not allow for space-filling without leaving gaps.

LATTICE, SPACE LATTICE, AND UNIT CELL

Lattice: A regular, three-dimensional arrangement of points in space, each of which has identical surroundings. It is an abstract concept representing the framework of a crystal.

Space Lattice: A lattice in three dimensions.

Unit Cell: The smallest repeating structural unit of a crystal lattice that, when translated in three dimensions, generates the entire crystal structure.

Crystal Systems and Bravais Lattices:

There are 7 crystal systems (cubic, tetragonal, orthorhombic, monoclinic, triclinic, hexagonal, rhombohedral) and 14 Bravais lattices, which represent all possible unique arrangements of points in a crystal lattice.

Crystal Planes:

These are imaginary planes passing through lattice points in a crystal. They are defined by Miller indices.

PACKING OF UNIFORM HARD SPHERES

Describes how spheres (representing atoms or ions) are arranged in a crystal structure to maximize packing efficiency.

Close-Packed Arrangements:

- **Hexagonal Close-Packed (hcp):** Stacking sequence ABCABC... or ABABAB... gives an ABAB... pattern. Coordination number = 12. Packing efficiency $\approx 74\%$.
- **Face-Centered Cubic (fcc):** Stacking sequence ABCABC... gives an ABCABC... pattern. Coordination number = 12. Packing efficiency $\approx 74\%$.

Coordination Number:

The number of nearest neighbors to an atom/ion in the crystal structure.

Packing Efficiency:

The fraction of the total volume occupied by the spheres.

TETRAHEDRAL AND OCTAHEDRAL VOIDS

Gaps or interstitial spaces within a crystal lattice formed by the arrangement of atoms/ions.

- **Tetrahedral Void:** A void surrounded by four atoms/ions in a tetrahedral arrangement. The radius ratio ($r_{\text{void}}/r_{\text{atom}}$) is approximately 0.225.
- **Octahedral Void:** A void surrounded by six atoms/ions in an octahedral arrangement. The radius ratio ($r_{\text{void}}/r_{\text{atom}}$) is approximately 0.414.

Void Space in Cubic Systems:

- **Simple Cubic (SC):** 1 tetrahedral void and 0 octahedral voids per unit cell (conceptually, not typically found in real solids).
- **Body-Centered Cubic (BCC):** 6 tetrahedral voids and 3 octahedral voids per unit cell.
- **Face-Centered Cubic (FCC):** 8 tetrahedral voids and 4 octahedral voids per unit cell.

INDEXING OF PLANES AND MILLER INDICES

Miller indices are a notation system used to describe the orientation of planes and directions in a crystal lattice.

Procedure for determining Miller Indices (hkl) for a plane:

1. Determine the intercepts of the plane on the crystallographic axes (x, y, z) in terms of the unit cell edge lengths (a, b, c). If the plane passes through the origin, translate it parallel to itself until it intercepts the axes.
2. Express these intercepts as fractions of the unit cell edge lengths.
3. Take the reciprocals of these fractional intercepts.
4. Clear the fractions by multiplying by the smallest common denominator to obtain the smallest possible integers. These integers are the Miller indices (hkl).

Example: A plane intercepts the x, y, and z axes at 2a, 3b, and 1c respectively. Intercepts are 2, 3, 1. Reciprocals are 1/2, 1/3, 1/1. Clearing fractions (multiply by 6): 3, 2, 6. So, Miller indices are (326).

DISTANCE BETWEEN CONSECUTIVE PLANES ($D_{\{HKL\}}$)

The distance between parallel crystal planes with Miller indices (hkl).

For Cubic Lattices:

The distance between consecutive (hkl) planes is given by:

$$d_{\{hkl\}} = \frac{a}{\sqrt{h^2 + k^2 + l^2}}$$

Where 'a' is the edge length of the unit cell.

For Orthorhombic Lattices:

The distance between consecutive (hkl) planes is given by:

$$d_{\{hkl\}} = \frac{1}{\sqrt{(\frac{h}{a})^2 + (\frac{k}{b})^2 + (\frac{l}{c})^2}}$$

Where 'a', 'b', and 'c' are the edge lengths of the unit cell along the x, y, and z axes, respectively.

Calculation Example (Cubic):

Calculate the interplanar distance for (210) planes in a cubic crystal with edge length $a = 400 \text{ pm}$.

Here, $h=2$, $k=1$, $l=0$.

$$d_{\{210\}} = \frac{400 \text{ pm}}{\sqrt{2^2 + 1^2 + 0^2}} = \frac{400 \text{ pm}}{\sqrt{4 + 1 + 0}} = \frac{400 \text{ pm}}{\sqrt{5}} \approx \frac{400}{2.236} \text{ pm} \approx 178.9 \text{ pm}$$

RELATION BETWEEN MOLAR MASS AND UNIT CELL DIMENSION (CUBIC SYSTEM)

The density (ρ) of a crystalline solid can be related to its molar mass (M), unit cell edge length (a), number of formula units per unit cell (Z), and Avogadro's number (N_A) using the following formula:

$$\rho = \frac{Z \times M}{a^3 \times N_A}$$

Where:

- ρ = density (e.g., g/cm^3 or kg/m^3)
- Z = number of atoms or formula units per unit cell (e.g., $Z=1$ for SC, $Z=2$ for BCC, $Z=4$ for FCC)

- M = molar mass (e.g., g/mol)
- a = edge length of the unit cell (e.g., cm or m). Ensure consistent units.
- N_A = Avogadro's number ($6.022 \times 10^{23} \text{ mol}^{-1}$)

Calculation Example:

A cubic crystal of a metal has an edge length of 350 pm. If its density is 8.0 g/cm³, calculate the molar mass of the metal. Assume the unit cell is BCC (Z=2).

Given: $a = 350 \text{ pm} = 350 \times 10^{-10} \text{ cm}$, $\rho = 8.0 \text{ g/cm}^3$, $Z=2$, $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$

Rearranging the formula: $M = \frac{\rho \times a^3 \times N_A}{Z}$

$$M = \frac{8.0 \text{ g/cm}^3 \times (350 \times 10^{-10} \text{ cm})^3 \times 6.022 \times 10^{23} \text{ mol}^{-1}}{2} \approx \frac{206.3 \text{ g/mol}}{2} \approx 103.15 \text{ g/mol}$$

The molar mass is approximately 103.15 g/mol.

BRAGG'S LAW OF DIFFRACTION

Bragg's law describes the condition for constructive interference of X-rays (or other electromagnetic radiation) scattered by parallel planes of atoms in a crystal.

Statement:

Constructive interference occurs when the path difference between waves scattered from adjacent planes is an integral multiple of the wavelength (λ).

$$n\lambda = 2d \sin \theta$$

Where:

- n = order of diffraction (an integer: 1, 2, 3, ...).
- λ = wavelength of the incident X-rays.
- d = interplanar spacing between adjacent crystal planes.
- θ = glancing angle (the angle between the incident X-ray beam and the crystal plane).

Derivation:

Consider two parallel planes of atoms in a crystal separated by a distance d . Let an X-ray beam of wavelength λ strike these planes at a glancing angle θ . The beam is reflected (scattered) from both planes. For constructive interference (a diffracted beam), the path difference between the two reflected beams must be an integral multiple of the wavelength ($n\lambda$).

Draw a perpendicular from the point where the first beam strikes the upper plane to the path of the second beam. Let this point be P. Let the points where the incident and reflected beams strike the planes be A and B respectively. The path difference is the difference between the path length $BC + CD$ and AE , where AE is the incident path from a reference point. However, it is more common to consider the path difference between the rays reflected from adjacent planes.

Let ray 1 be incident at A and reflected at A' . Let ray 2 be incident at B and reflected at B' . Rays 1 and 2 are parallel. For constructive interference, the path difference must be $n\lambda$.

Draw a perpendicular from A to the path of ray 2 (at point C). Draw a perpendicular from B to the path of reflected ray 1 (at point D).

The path difference is $(BC + CD) - 0$.

In the right-angled triangle formed by dropping a perpendicular from A to ray 2 (at C) and considering the path from A to B and then C:

Consider ray 1 striking plane 1 at A, and ray 2 striking plane 2 at B. Let the angle between the incident ray and the plane be θ . Then the angle between the incident ray and the normal to the plane is $90^\circ - \theta$.

Let the reflected rays be r_1 and r_2 . For constructive interference, the path difference between r_1 and r_2 must be $n\lambda$.

Draw a perpendicular from A to the path of ray 2, meeting at C. Also, draw a perpendicular from B to the path of the reflected ray 1, meeting at D.

The path difference is $(BC + CD)$.

In the right-angled triangle ABC, $\angle ABC = 90^\circ$. The angle between the incident ray and the plane is θ . The angle of incidence with the normal is $90^\circ - \theta$.

In triangle ABC (where AC is the path difference along the normal), consider the incident ray and the reflected ray. The angle of incidence with the normal is θ , and the angle of reflection is θ .

From A, drop a perpendicular to the path of ray 2 at C. Then $BC = d \sin \theta$.

From B, drop a perpendicular to the path of reflected ray 1 at D. Then $AD = d \sin \theta$.

The path difference between ray 1 and ray 2 is $BC + AD$ (or $BC + CD$ if we consider the ray entering at B and reflecting at B' , and ray entering at A and reflecting at A').

Let's use a simpler geometry: Draw the two incident rays parallel to each other. They strike planes at A and B. They are reflected at A' and B' . The path difference is $(A'C + CB')$ where C is a point on the reflected ray from B such that AC is perpendicular to it. If the angle between the incident ray and the plane is θ , then the angle between the incident ray and the normal is $(90^\circ - \theta)$. The angle of reflection is also θ from the normal. So the angle between the reflected ray and the plane is θ .

Consider the triangle formed by points A, B and the point C on the ray from B which is perpendicular to the ray from A. The distance d is the separation between planes. The path difference $BC + CD$ equals $n\lambda$.

In $\triangle ABC$, $\angle BAC = \theta$. $BC = d \sin \theta$. In $\triangle ABD$, $\angle BAD = \theta$. $AD = d \sin \theta$. Total path difference = $BC + AD = 2d \sin \theta$.

Thus, for constructive interference: $2d \sin \theta = n\lambda$.

DETERMINATION OF CRYSTAL STRUCTURE

Several techniques are used to determine crystal structures, with X-ray diffraction being the most common.

Powder Method (Debye-Scherrer method):

A polycrystalline sample (powder) is irradiated with monochromatic X-rays. The X-rays are diffracted by the various sets of crystal planes according to Bragg's law. The diffracted beams are recorded on a photographic film or by a detector as a series of concentric rings. Each ring corresponds to a specific d_{hkl} spacing and thus a specific set of (hkl) planes. The angular positions of these rings allow for the calculation of d_{hkl} values, which can then be used to determine the unit cell dimensions and crystal system. This method is useful for identifying unknown substances and studying phase transitions.

STRUCTURE OF NACL AND KCL CRYSTALS

Both NaCl and KCl crystallize in the Face-Centered Cubic (FCC) lattice structure. They are isomorphous, meaning they have the same crystal structure.

Sodium Chloride (NaCl) Structure:

- It can be viewed as an FCC lattice of Na^+ ions with Cl^- ions occupying all octahedral voids, OR as an FCC lattice of Cl^- ions with Na^+ ions occupying all octahedral voids.
- Each Na^+ ion is octahedrally surrounded by six Cl^- ions, and vice versa.
- The unit cell contains 4 Na^+ ions and 4 Cl^- ions ($Z=4$).
- The Cl^- ions form an FCC lattice, and the Na^+ ions are located at the $(1/2, 0, 0)$ positions (octahedral sites).

Potassium Chloride (KCl) Structure:

- Similar to NaCl, it has an FCC arrangement.
- It is also composed of K^+ and Cl^- ions.
- The structure is essentially the same as NaCl, but the relative sizes of K^+ and Cl^- ions lead to slight differences in lattice parameters and diffraction patterns compared to NaCl.
- The interplanar distances and unit cell parameters can differ.

NUMERICAL PROBLEMS

Problem 1: Density Calculation

A metal crystallizes in an FCC structure with an edge length of 400 pm. If the molar mass of the metal is 100 g/mol, calculate its density. ($N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$)

Problem 2: Unit Cell Edge Length

Silver (Ag) crystallizes in FCC structure. The density of Ag is 10.5 g/cm³. The molar mass of Ag is 107.9 g/mol. Calculate the edge length of the unit cell. ($N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$)

Problem 3: Packing Efficiency

Calculate the packing efficiency of a simple cubic (SC) crystal structure, assuming atoms are touching spheres.

Problem 4: Bragg's Law Application

When X-rays of wavelength 1.54 \AA are diffracted by a crystal, the first-order diffraction peak ($n=1$) is observed at a glancing angle of 20° . Calculate the interplanar spacing (d) for the crystal planes causing this diffraction.

Problem 5: Void Calculation

In a crystalline solid, atoms of element A form an FCC lattice. Atoms of element B occupy all the octahedral voids. If the density of the solid is 2.5 g/cm^3 and the edge length of the unit cell is 500 pm , calculate the molar mass of element B. Assume molar mass of A is 50 g/mol . ($N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$)

Would you like to work through any of these problems, or would you like me to generate solutions for them?