MODERN PHYSICS: QUANTUM MECHANICS STUDY
MATERIALS

PARTICLE ASPECT OF RADIATION

BLACKBODY RADIATION

Blackbody radiation refers to the electromagnetic radiation emitted by a black body
(an idealized object that absorbs all incident electromagnetic radiation). Max Planck
revolutionized physics by proposing that energy is quantized, meaning it is emitted
or absorbed in discrete packets called quanta. The energy of a quantum is given by

E = hf, where h is Planck's constant (approximately 6.626 x 10'34J-s) and fis the
frequency of the radiation.

Planck's Law describes the spectral radiance of a black body as a function of
frequency or wavelength.

Example Problem: A black body at 6000 K has its peak emission at 500 nm. If the
temperature is increased to 8000 K, what is the new peak emission wavelength?
(Wien's Displacement Law: A . T = constant)

Solution Approach: Using Wien's Law, A =(A

= (500 nm * 6000 K) / 8000 K = 375 nm.
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PHOTOELECTRIC EFFECT

The photoelectric effect is the emission of electrons from a material when light
shines on it. Albert Einstein explained this phenomenon by extending Planck's
guantum hypothesis. He proposed that light itself consists of particles called
photons, each carrying an energy E = hf. For an electron to be emitted, it must
absorb a photon with enough energy to overcome the work function (®) of the

material. The kinetic energy (KE,, ) of the emitted electron is given by Einstein's

photoelectric equation: KE,, = = hf - ®.



Key concepts include:

* Threshold Frequency (f,): The minimum frequency of light required to eject

electrons. hf, = .

* Stopping Potential (V,): The minimum negative voltage applied to the
collector plate that stops the most energetic electrons from reaching it. K,

= eV, where e is the elementary charge.

Example Problem: Light of frequency 8.0 x 10"4 Hz shines on a metal surface with
a work function of 2.0 eV. Calculate the maximum kinetic energy of the emitted

electrons in Joules and the stopping potential in Volts. (1 eV = 1.602 x 10'19J)

Solution Approach: Convert work function to Joules: @ =2.0 eV * 1.602 x 70'791/eV =
3.204 x 10°'? J. Calculate photon energy: E = hf = (6.626 x 1034 J-s) * (8.0 x 10'% Hz) =
5.307x 1077 | Max KE: KE,, . . =E-®=5301x10"7)-3.204x 107" )= 2.097 x 10779 .

Stopping potential: V, = KE, /e =(2.097x107? ) /(1.602x 1077 ¢ = 1.31 V.

COMPTON EFFECT

The Compton effect is the inelastic scattering of a photon by a charged particle,
usually an electron. Arthur Compton demonstrated that photons, despite being
massless, carry momentum (p = h/A = E/c) and behave like particles during
collisions. When a photon scatters off an electron, it loses energy (and thus its
wavelength increases), while the electron gains kinetic energy and momentum. The
change in wavelength (AN) depends on the scattering angle (8) and is given by the
Compton scattering formula: AA =A"-A =(h /m ) *(1 - cos 6), where m, is the

electron rest mass and c is the speed of light. The term h/m ¢ is the Compton

wavelength of the electron (approximately 0.0243 A or 2.43 x 10712 m).

Example Problem: A 0.050 A X-ray photon is scattered at an angle of 60° by an
electron. What is the wavelength of the scattered photon?

Solution Approach: Calculate the change in wavelength: AA = (0.0243 A) * (1 - cos
60°) = (0.0243 A) * (1 - 0.5) = 0.01215 A. The new wavelength isA'= A + AX = 0.050 A +
0.01215 A = 0.06215 A.



WAVE ASPECT OF PARTICLES

DE BROGLIE'S HYPOTHESIS: MATTER WAVES

Louis de Broglie proposed that if light waves exhibit particle-like properties
(photons), then particles like electrons should exhibit wave-like properties. He
postulated that a particle with momentum p has an associated wavelength A given
by A = h/p, where h is Planck's constant. This wavelength is known as the de Broglie
wavelength.

Example Problem: Calculate the de Broglie wavelength of an electron (mass 9.11 x

1073 kg) moving at a speed of 1.0 x 10% m/s.

Solution Approach: First, calculate the momentum: p =mv =(9.11 x 1037 kg) * (1.0
x 100 m/s)=9.11 x 10%° kg-m/s. Then, calculate the wavelength: A = h/p = (6.626 x
1034 J:5) /(9.11 x 102° kg-m/s) = 7.27 x 109 m (or 0.727 nm).

HEISENBERG'S UNCERTAINTY PRINCIPLE

Werner Heisenberg's uncertainty principle states that there are fundamental limits
to how precisely certain pairs of physical properties of a particle, known as
conjugate variables, can be known simultaneously. The most famous pair is
position (x) and momentum (p). The principle states: Ax Apx > h/2, where Ax is the

uncertainty in position, 4p, is the uncertainty in momentum along the x-axis, and h

= h/(2n) is the reduced Planck's constant.
Another important relation is between energy (E) and time (t): AE At = h/2.

Example Problem: An electron is confined to a region of space of width 1.0 nm.
Estimate the minimum uncertainty in its momentum.

Solution Approach: We can approximate Ax = 1.0 nm = 1.0 x 10 m. Using the
uncertainty principle, 4p, = h/(24x) = (1.055 x 1034 J:) /(2 * 1.0 x 107 m) = 5.275 x

106 kg-m/s.



WAVE PACKET AND TIME EVOLUTION

A single de Broglie wave with infinite extent is not localized. To represent a localized
particle, one needs to superimpose (add) waves of slightly different wavelengths.
This superposition creates a wave packet. The wave packet represents the
probability amplitude of finding the particle at a certain position. The time
evolution of this wave packet is governed by the Time-Dependent Schrodinger
Equation.

GROUP AND PHASE VELOCITIES

For a wave packet, two velocities are important:

* Phase Velocity (Vp): The speed at which a point of constant phase (e.g., a

crest) of a monochromatic wave propagates. For a de Broglie wave, Vp = E/p =

(mcz)/(mv) = cz/v, where v is the particle's velocity. Since v <, vp > ¢, which
does not violate relativity as it doesn't carry information.

* Group Velocity (vg): The speed at which the overall envelope (and thus the

wave packet) of the wave propagates. This is the velocity of the particle. It can

be shown that Vg = dw/dk, where w is angular frequency and k is the wave

number. For a relativistic particle, Vg = V.

Example Problem: For a non-relativistic particle of mass m and velocity v, show
that Vg = V.

Solution Approach: Using de Broglie relations £ = hw and p = hk, we have w = E/h =
(02/(2m))/h = (hk)2/(2mh) = hk?/(2m). Then, v, = dw/dk = d/dk (hk%/(2m)) = h(2k)/(2m) =
hk/m. Since p = hk, Vg = p/m =mv/m =v.

SCHRODINGER EQUATION AND WAVEFUNCTION



THE TIME-DEPENDENT SCHRODINGER EQUATION (TDSE)

The TDSE is a fundamental equation in quantum mechanics that describes how the
guantum state (represented by the wavefunction, ¥) of a physical system changes
over time. For a single particle of mass m in a potential V(r, t), it is given by:

ih aW(r, t)/at = HW(r, t)

where H = -h%2m V2 + V(r, t) is the Hamiltonian operator, and VZis the Laplacian
operator.

THE TIME-INDEPENDENT SCHRODINGER EQUATION (TISE)

When the potential energy V does not depend on time, the wavefunction can be
separated into spatial and temporal parts: ¥(r, t) = Y(r) * @(t). This leads to the TISE,
which describes the spatial distribution of a particle in a stationary state (a state
where the probability density does not change with time):

Ay(r) = Eg(r)
or
-h%2m N2 (r) + V(r)Y(r) = E(r)

Here, E is the energy eigenvalue, representing the possible energy values the
system can have. The solutions (r) are the energy eigenfunctions.

ACCEPTABILITY CONDITIONS FOR WAVE FUNCTIONS

For a wavefunction ¢(r) to be physically meaningful, it must satisfy certain
conditions:

* Single-valued: {(r) must have only one value at each point in space.

+ Continuous: {(r) must be continuous everywhere.

* Finite: (r) must be finite everywhere.

* Square-integrable: The integral of the absolute square of ((r) over all space
must be finite ([ | Y(r) | 2 dr < «). This ensures the total probability is 1.



PROBABILITY INTERPRETATION OF WAVE FUNCTION

According to the Born interpretation, the square of the absolute value of the

wavefunction, |¥(r, t) |2, represents the probability density of finding the particle at
position r at time t. The probability dP of finding the particle in a small volume

elementdVat(rt)isdP=|¥(r t) |2 dV. The total probability of finding the particle
anywhere in space must be 1: [ |¥(r, t) |2 dv=1.

VECTOR REPRESENTATION AND DIRAC'S BRA-KET NOTATION

Quantum mechanical states can be represented as vectors in a complex vector
space called Hilbert space. Each state | ) corresponds to a vector. Dirac's bra-ket
notation is a convenient way to handle these vectors:

+ Ket vector: | ) represents a state vector.
* Bra vector: (| is the complex conjugate transpose of the ket vector.

* Inner product: (¢ | ) represents the inner product between two states, which
corresponds to the integral [@*(r){(r) dr. This value is a complex number.

The inner product (¢ |¢) is the norm squared of the state, which must be real and
non-negative. For a normalized state, (¢ |Y) = 1.

ORTHONORMALITY OF WAVE FUNCTIONS

If ¢, and ¢ . are two distinct eigenfunctions of a Hermitian operator (like the

Hamiltonian), they are orthogonal to each other. This means their inner product is
zero:

(Y lg) =, )Y, (r)dr=0,forn = m.

A set of eigenfunctions that are mutually orthogonal and normalized to unity is
called an orthonormal set.

CONCEPT OF OPERATORS



OPERATORS, EIGENFUNCTIONS, AND EIGENVALUES

In quantum mechanics, physical observables (like position, momentum, energy)
are represented by linear operators. When an operator A acts on a function ¢, it
transforms it into another function. If the result is proportional to the original
function, then ¢ is an eigenfunction of A, and the proportionality constant is the
eigenvalue:

A =ay

Here, A is the operator, ¢ is the eigenfunction, and a is the eigenvalue. The
eigenvalues represent the possible results of measuring the observable
corresponding to the operator A.

LINEAR OPERATORS AND COMMUTATION

An operator A is linear if A(c,r, + ¢,0,) = C,Ap, + C,Ap, for constants ¢, ¢, and
functions ¢, ¢,,.

The commutator of two operators A and B is defined as [A, B] = AB - BA. If [4, B] = 0,
the operators commute, meaning they can be applied in any order, and their
corresponding observables can be measured simultaneously with arbitrary
precision (their eigenfunctions are the same).

If [A, B] # 0, they do not commute, and there is a fundamental limit to the precision
with which both observables can be known simultaneously, as expressed by the
Heisenberg uncertainty principle.

Example Problem: For a free particle, the momentum operator is p, = -ih 3/0x and

the position operator is X = x. Show that they do not commute.

Solution Approach: Calculate the commutator: [X, p,] =X p, - p, X = x(-ih 8/9x) - (-ih

a/0x)x. Applying this to a test function f(x): (x(-ih 3/9x) - (-ih 3/0x)x)f(x) = -ih x 9f/ax - (-ih
(3f/ox + x 9f/0x)) = -ih x 9f/ox + ih of/ox + ih x of/ax = ih 3f/dx. Thus, [X, p,] = ih, which is

not zero, so they do not commute.



EXPECTATION VALUE

The expectation value (A) of an observable corresponding to the operator A for a
system in a normalized state | ) is the average value of measurements of that
observable on an ensemble of identically prepared systems. It is calculated as:

(A) = (Q|A|Y) = [W*(r) Ad(r) dr

POSTULATES AND GENERAL PRINCIPLES OF QUANTUM
MECHANICS

POSTULATES OF QUANTUM MECHANICS

The foundation of quantum mechanics is built upon a set of postulates:

1. State Postulate: The state of a quantum system is completely described by a
wavefunction ¥(r, t), which is a vector in Hilbert space.

2. Observable Postulate: To every observable quantity in classical physics, there
corresponds a linear, Hermitian operator in quantum mechanics.

3. Measurement Postulate: The possible results of measuring an observable
are the eigenvalues of the corresponding operator. Upon measurement, the
system collapses into the eigenstate corresponding to the measured
eigenvalue.

4. Probability Postulate (Born Rule): The probability of measuring a particular
eigenvalue is given by the square of the absolute value of the wavefunction's
projection onto the corresponding eigenstate. For a normalized state |¢) and
an operator A with eigenvalue a and eigenfunction |a), the probability is |(a|

¥)1°.
5. Time Evolution Postulate: The evolution of the wavefunction in time is
governed by the Time-Dependent Schrédinger Equation (TDSE): ih a¥/at = HY.

HERMITIAN OPERATORS

An operator A is Hermitian if it is equal to its own complex conjugate transpose

(adjoint): Al = A.1n integral form, this means [@*(r) Ay(r) dr = [(Ap)*(r) Y(r) dr for any
valid wavefunctions ¢ and .



Properties of Hermitian Operators:

* Their eigenvalues are always real numbers, corresponding to measurable
quantities.

* Eigenfunctions corresponding to distinct eigenvalues are orthogonal.

Example Problem: Show that the momentum operator g, = -ih d/dx is Hermitian on

the interval [a, b].

Solution Approach: We need to show fab ©*(x) px Y(x) dx = fab (,6X<p)*(x) Y(x) dx.
Starting with the left side: [ ,° ¢*(x) (-ih dy/dx) dx =-ih [ P ¢*(x) dy/dx dx. Using
integration by parts: [<p*(x)c/1(x)]ab - fab (dp*/dx) Y(x) dx. If we assume the boundary

terms vanish (e.g., wavefunctions are zero at boundaries or periodic), this becomes
-fab (dp*/dx) Y(x) dx. Since (ﬁx<p)* = (-ih de/dx)* = ih dp*/dx, the right side is fab (ih

d*/dx) Y(x) dx = ih [ P (de*/dx) Y(x) dx. Thus, -if [ (dep*/dx) ) dx = (it [ P (dp*/
dx) Y(x) dx). Wait, need to be careful with the sign. Let's retry integration by parts.
Left side: fab ©*(x) (-ih dyp/dx) dx = -ih fab ©*(x) dy/dx dx. Integration by parts (u =
*, dv = d/dx dx => du = d*/dx dx, v = P): -if fp*e)],° - (ih) J P (dp*/dx) Yix)
dx. Assuming boundary terms are zero: ih fab (dp*/dx) Y(x) dx. Now, consider the
right side: [ ab (quJ)*(x) Yx)dx=[ ab (-ih de/dx)*(x) W(x) dx = [ ab (ih dp*/dx) W(x) dx =

ih fab (dp*/dx) Y(x) dx. The two sides are equal, so f, is Hermitian (under

appropriate boundary conditions).

EXPANSION IN EIGENFUNCTIONS

A crucial property of operators corresponding to physical observables is that their
eigenfunctions form a complete set. This means any arbitrary, well-behaved
wavefunction @(r) can be expanded as a linear combination (a sum or integral) of
the eigenfunctions ¢ (r) of a given operator A:

() =2, c, 1)

where ¢, are coefficients. If the eigenfunctions are orthonormal, these coefficients

can be found using the inner product: c, = ((pn |®) = f(,bn*(r)dJ(r) dr.



EIGENFUNCTIONS OF COMMUTING OPERATORS

If two operators A and B commute (i.e., [A, B] = 0), then there exists a complete set
of common eigenfunctions that are eigenfunctions of both operators
simultaneously. This means that the corresponding physical quantities can be
measured simultaneously with arbitrary precision.
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