DETAILED STUDY MATERIALS: QUANTUM MECHANICS
FUNDAMENTALS

[. QUANTUM HARMONIC OSCILLATOR (QHO)

A. INTRODUCTION AND SETUP

The Quantum Harmonic Oscillator (QHO) is a fundamental model in quantum
mechanics, describing systems where a particle is subjected to a potential
proportional to the square of its displacement from equilibrium. Examples include
molecular vibrations and oscillations of atoms in a solid.

The potential energy is given by:
V(X)=1/2*m* w? * x?
where:

* m is the mass of the particle
* w (omega) is the angular frequency of the oscillator
* x is the displacement from equilibrium

The one-dimensional time-independent Schrédinger equation is:
- (A% 1 2m) * (d*(x) / dx?) + V(x) * P(x) = E* (x)
where:

* h (h-bar) is the reduced Planck's constant
* (x) (psi) is the wave function
* Eis the energy of the state



B. SOLVING THE HERMITE DIFFERENTIAL EQUATION

Substituting V(x) into the Schrédinger equation and introducing dimensionless
variables:

€ =V(mw/h) * x

The equation can be transformed into a form related to Hermite's differential
equation:

(d?u/dE?) + ((2E/ (Aw)) - E) * u=0

where u(€) is proportional to Y(x). For bound states (wave functions that go to zero
at infinity), solutions exist only for specific energy levels and involve Hermite
polynomials, H_n(£).

C. ALGEBRAIC SOLUTION (LADDER OPERATORS)

An elegant method uses creation (at) and annihilation (a) operators:
a=v(mw/2h) * (x + i*p_x / (Mw))

at =vV(mw/2h) * (x - i*p_x / (Mw))

with the commutation relation [a, at] = 1.

The Hamiltonian operator can be expressed as:

x=hw *(ata+1/2)

This leads to quantized energy levels:

En=(n+1/2)* hw

wheren =0, 1, 2, ... is the principal quantum number.

* Ground state energy (n=0): E_.0=1/2 * hw
* Excited state energies: E_.n=(n+ 1/2) * hw

The corresponding wave functions are:

P_n(x) « H_n(V(mw/h) * x) * exp(-mwx?/2h)



D. CLASSICAL TURNING POINTS

Classical turning points are the positions where the total energy E equals the
potential energy V(x). For the n-th energy level, E_n = V(x_tp):

(N+1/2)*hw =1/2*m * w? * x_tp?
X_tp=xV(2n+1)*h/(Mmw))

These points define the classical limits of motion, within which the probability of
finding the particle is non-zero. Quantum mechanically, there is a non-zero
probability of finding the particle beyond these points (tunneling).

E. EXPECTATION VALUES

For the n-th energy eigenstate Y_n:

* Expectation value of position: <x>_n =0

« Expectation value of position squared: <x*>_n = ((n + 1/2) * A) / (Mw)

* Expectation value of momentum: <p_x>_n=0

* Expectation value of momentum squared: <p_x*>_n=(mw/2) * (2n+ 1) * h

F. NUMERICAL PROBLEMS (EXAMPLES)

1. Calculate the energy levels for the first five states of a system with m =1 amu
and w = 10A13 rad/s. Determine the zero-point energy. [Hint: 1 amu = 1.66 x
107-27 kg; h = 1.054 x 107-34 J*s]

2. For the ground state (n=0) of the QHO, find the classical turning points. If m=2 kg
and w=5 rad/s, what is the energy? What are the turning points?

3. Using the ladder operators, show that [%, a] = -hwa. (This demonstrates that 'a'
lowers the energy state).



II. RIGID ROTATOR

A. ANGULAR MOMENTUM COMMUTATION RULES

Angular momentum is quantized. The components of the angular momentum
operator (L_x, L_y, L_z) do not commute:

[Lx Lyl=iAL_z
[Ly, L_z] =ih L x
[Lz, Lx]=ihL.y

However, the square of the total angular momentum, L? = L_x* + L_y?* + L_Z?,
commutes with each component:

[L% Li]=0fori=x,y, z

B. ANGULAR MOMENTUM OPERATORS IN SPHERICAL POLAR
COORDINATES

In spherical coordinates (r, 6, ¢), the angular momentum operators are typically
expressed using derivatives with respect to angles:

Lz = -if (8/0¢)

L2 =-A?[ 1/sin(B) * 3/90 * (sin(B) * 3/86) + 1/sin?(B) * (8°/8?) ]

C. QUANTIZATION OF ANGULAR MOMENTUM



The simultaneous eigenstates of L? and L_z are characterized by quantum numbers
land m:

* Eigenvalues of L% L? |I, m> = I(I+1)A% |I, m>, where | =0, 1, 2, ...
* Eigenvalues of L_z: L_z |I, m>=mhA ||, m> where m = -, -I+1, ..., I-1, |

Thus, the magnitude of the angular momentum vector is VI(I+1)A, and its projection
onto the z-axis is mA.

D. RIGID ROTATOR MODEL

A rigid rotator consists of two masses (m1, m2) connected by a rigid rod of length .
For a diatomic molecule, this is approximated by reducing the system to a single
mass W (reduced mass) at a fixed distance R from the origin.

H=(mMm1*m2)/(m1+m2)

The potential energy is zero (V=0) as the bond length is fixed.

E. SCHRODINGER EQUATION FOR RIGID ROTATOR

The Hamiltonian is simply the kinetic energy operator in terms of angular
momentum:

x=12/(2I)

where I = uR? is the moment of inertia.
The Schroédinger equation is:

(L?/(2D) * (6, d) = E* Y(®, §)

In spherical coordinates (where r is fixed):

- (R?/ 2I) * [ 1/sin(B) * 3/38 * (sin(B) * 8/66) + 1/sin%() * 32/ad*1* Y(B, b) = E * (B, })



F. SEPARATION OF VARIABLES AND SPHERICAL HARMONICS

Separating the wave function into angular parts: $(6, ¢) = Y_Im(B, ¢). The solutions
are the Spherical Harmonics, Y_Im, which are simultaneous eigenfunctions of L?
and L_z.

The energy levels are:
E_l=1(1+1)* A%/ (2])

The energy depends only on the quantum number / (the azimuthal quantum
number), not on m. This leads to degeneracy.

G. DISCUSSION OF SOLUTION

The Spherical Harmonics, Y_Im(0, ¢), are complex functions that describe the
angular distribution of the wave function. The solution implies that the rotational
energy levels of a diatomic molecule are quantized, with the spacing between levels
increasing with /.

H. NUMERICAL PROBLEMS (EXAMPLES)

1. For a CO molecule (reduced mass p = 1.14 x 107-26 kg, bond length R=1.13 x
107-10 m), calculate the moment of inertia. Then, find the energies for the first
three rotational levels (I=0, 1, 2).

2. Calculate the frequency of photons that would be emitted or absorbed during
transitions between the |=1 and |=2 rotational states of the CO molecule. [Hint: E =
hv]

III. HYDROGEN ATOM AND HYDROGEN-LIKE IONS



A. SETUP OF SCHRODINGER EQUATION

For a hydrogen atom (one electron of mass m and charge -e orbiting a nucleus of
charge +Ze), the potential energy is the Coulomb potential:

V(r) = - (Ze*) / (4mte_0 r)

where €_0 is the permittivity of free space. The Schrédinger equation is solved in
spherical polar coordinates (r, 8, ), with the Hamiltonian being:

x = - (h*/2p) V2 + V(r)

where u is the reduced mass of the electron-nucleus system (for hydrogen,
approximately the electron mass).

B. SEPARATION OF VARIABLES

The wave function Y(r, 6, ¢) is separated into radial and angular parts:

$(r, ©, d) = R(r) * Y_Im(B, $)

where R(r) is the radial wave function and Y_Im(6, ¢) are the Spherical Harmonics
solved for the rigid rotator.

This separation leads to two equations: one for the radial part and one for the
angular part (which yields the spherical harmonics and their associated quantum
numbers / and m).

C. SOLUTION OF ANGULAR PART (@ PART ONLY)

The part of the angular solution dependent on ¢ arises from the L_z operator. The
guantization condition for L_z gives:

LzY Im=mAY_Im

where m is the magnetic quantum number (m = -, ..., I). The solution for the ¢
dependence is typically of the form eA(imdo).



D. QUANTIZATION OF ENERGY

Solving the radial equation yields the quantized energy levels for the hydrogen
atom (Z=1):

E_n=-(u*(Ze?)?)/(2*(4me 0) * n*) =-(13.6 eV *Z}) / n’

where n is the principal quantum number (n =1, 2, 3, ...). The energy depends only
on n, leading to degeneracy.

E. REAL WAVE FUNCTIONS

The spherical harmonics Y_Ilm are complex. For some applications, real wave
functions are preferred. These can be constructed as linear combinations of
complex Y_Im functions with the same / but different m values (e.g., Y_I,m + Y_|,-m
andi(Y_l,m-Y_l,-m)).

F. AVERAGE AND MOST PROBABLE DISTANCES

The radial wave function R_nl(r) determines the probability distribution of the
electron's distance from the nucleus.

* Most Probable Distance (r_mp): Found by maximizing the radial probability
density P(r) = r* |R_nl(r)|>.
* Average Distance (<r>_nl): Calculated by integrating r * P(r) over all r.

For Hydrogen (Z=1):

« <r>_nl=(a_0/2) * [3n? - I(I+1)], where a_0 = 41te_0 A%/ (m_e e?) is the Bohr
radius.

* Most probable distance is also related to n and |, specific formulas vary. For
the ground state (n=1, I=0), <r>_10=1.5a_0, and r_mp = a_0.



G. SCHRODINGER EQUATION FOR MANY-ELECTRON ATOMS

Setting up the Schroédinger equation for atoms with more than one electron (like
Helium, Z=2, with 2 electrons) becomes significantly more complex due to the
electron-electron repulsion term in the potential:

V_total = V_nucleus + Sum(V_electron_nucleus) + Sum(V_electron_electron)

For Helium, the interaction term is e? / (41e_0 |r1 - r2|), which depends on the
distance between the two electrons (r1 and r2).

This term makes the equation non-separable in spherical coordinates, requiring
approximations (like the Hartree-Fock method or variational methods) to find
solutions.

H. NUMERICAL PROBLEMS (EXAMPLES)

1. Calculate the ionization energy of the ground state of He+ ion (Z=2). [Hint: Use
the energy formula for hydrogen-like ions and note ionization means removing the
electron to n=o]

2. For the Hydrogen atom's ground state (n=1, 1=0), calculate the most probable
distance and the average distance of the electron from the nucleus in terms of the
Bohr radius (a_0).

3. Explain why the Schroédinger equation for Helium cannot be solved by simple
separation of variables.
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