DETAILED STUDY MATERIAL: ROTATION AND
VIBRATIONAL SPECTROSCOPY WITH NUMERICAL
PROBLEM EXAMPLES

1. ROTATION SPECTROSCOPY

This section covers the principles, selection rules, intensity factors, and applications
of rotational spectroscopy for determining molecular structures.

1.1 Introduction to Rotation Spectroscopy

Rotation spectroscopy, also known as microwave spectroscopy, probes the
rotational energy levels of molecules. These transitions occur in the microwave
region of the electromagnetic spectrum. It is primarily used for studying the
structure of small molecules in the gas phase.

1.2 Selection Rules for Rotational Spectroscopy

For a molecule to exhibit pure rotational absorption or emission spectra, it must
possess a permanent dipole moment.

The selection rules for diatomic molecules are:

* A) = +1: The rotational quantum number ] can change by plus or minus one
unit.

* A} = +1 corresponds to absorption, and AJ = -1 corresponds to emission.
For linear, symmetric top, and spherical top molecules, the selection rules are:

* Diatomic and Linear Molecules: A] = +1
* Symmetric Top Molecules: A =0, +1; AK=0

* Spherical Top Molecules: Generally do not show pure rotational spectra as
they lack a permanent dipole moment unless degenerate levels are involved
and perturbed.



1.3 Intensities of Spectral Lines

The intensity of a spectral line is proportional to:

* Population of the initial energy level: According to the Boltzmann
distribution, higher populated levels lead to stronger transitions.

* Transition probability: Governed by the selection rules and the dipole
moment of the molecule.

Boltzmann Distribution: The population of a rotational level J is given by:

N, /N

j / Neotal = 2J+1)* exp(-EJ /KT)/Q

rot

where EJ = BJ(J+1) for diatomic molecules (in appropriate units), k is the Boltzmann

constant, T is the absolute temperature, and Q__. is the rotational partition

rot
function.

1.4 Determination of Bond Lengths

1.4.1 Diatomic Molecules

The energy levels of a rigid diatomic rotor are given by:

EJ =B ) (J+1)

where B is the rotational constant, related to the moment of inertia (I) by B=h /
(8m3cI). The moment of inertia for a diatomic molecule is I = pr?, where p is the
reduced mass and r is the bond length.

Numerical Problem Example:

A diatomic molecule exhibits a rotational spectrum with lines spaced 2 cm™.
Calculate the bond length of the molecule. (Given: h = 6.626 x 1073*J-s, c =3 x 10"
cm/s, Avogadro's number NA =6.022 x 102 mol™). Assume the molecule is HCI.

Steps to solve:

1. Determine the rotational constant B from the spacing of spectral lines.
2. Calculate the moment of inertia I using B.
3. Calculate the reduced mass p for the given molecule.



4. Calculate the bond length r using I = pr?,

1.4.2 Linear Triatomic Molecules

For linear triatomic molecules, the concept of a single bond length is extended to
internuclear distances. The molecule can rotate about an axis perpendicular to the
molecular axis. The moment of inertia calculation becomes more complex,
involving the masses and positions of all atoms.

Numerical Problem Example:

Consider the molecule OCS. If its rotational constant is B =0.155 cm™, determine its
moment of inertia and discuss how isotopic substitution (e.g., '®0 substitution)
could help determine individual bond lengths (CO and CS).

Steps to solve:

1. Calculate the moment of inertia from B.

2. For linear molecules, I = Imir?, where m; is the mass of atom i and r; is its
distance from the center of mass.

3. Set up equations for different isotopic substitutions and solve for the
internuclear distances.

1.5 Isotopic Substitution

Observing the rotational spectra of molecules with different isotopes can be very
powerful for structure determination. Since the electronic structure remains largely
unchanged, isotopic substitution primarily affects the moment of inertia and thus
the rotational constant B. By comparing the B values of isotopically substituted
molecules, one can often determine internuclear distances and even distinguish
between different isomers.

2. VIBRATIONAL SPECTROSCOPY

This section delves into the classical and quantum mechanical descriptions of
molecular vibrations, including force constants, anharmonicity, potential energy
surfaces, and the nature of vibrational spectra.



2.1 Classical Equation of Vibration (Harmonic Oscillator Model)

A diatomic molecule can be approximated as two masses (m4 and m;) connected by
a spring. The motion is described by the harmonic oscillator model, where the
restoring force is proportional to the displacement from equilibrium:

= -kx

where k is the force constant and x is the displacement. The angular frequency of
vibration (w) is given by:

w = V(k/p)

where W is the reduced mass (4 = mam, / (m4 + my)). The frequency in cm™
(wavenumber, V) is related by w = 21tcV.

2.2 Computation of Force Constant

From the vibrational frequency (V) of a diatomic molecule, the force constant (k) can
be calculated:

k = 4mc?pv?
Numerical Problem Example:

The vibrational frequency of "H*Cl is 2990 cm™. Calculate the force constant of the
bond. (Given: p for "H*Cl = 0.98 x 107" kg, ¢ = 2.998 x 10" cm/s).

Steps to solve:

1. Ensure all units are consistent (e.g., kg for mass, cm/s for c).
2. Plug the values into the formula for k.

2.3 Amplitude of Diatomic Molecular Vibrations

The amplitude of vibration refers to the maximum displacement of the atoms from
their equilibrium positions. For a harmonic oscillator, the amplitude is quantized
and depends on the vibrational energy level.



2.4 Anharmonicity and Morse Potential

Real molecular potentials are anharmonic, meaning the restoring force is not
strictly proportional to displacement, especially at larger displacements. The Morse
potential is a more realistic model:

V(r) = De [1 - exp(-a(r - re))I?

where D. is the dissociation energy (well depth), r. is the equilibrium bond length,
and 'a' is a constant related to the force constant.

2.5 Dissociation Energies

The Morse potential provides a good approximation for the dissociation energy
(De), representing the energy required to break the bond from its lowest vibrational
state.

The energy levels for a Morse oscillator are given by:
G(V) = (Vv + 1/2)hwe - (V + 1/2)> hwe Xe

where v is the vibrational quantum number, we is the harmonic frequency, and X. is
the anharmonicity constant.

Numerical Problem Example:

A diatomic molecule has G(0) = 0.52 eV and G(1) = 1.53 eV. Calculate its harmonic
frequency (we) and anharmonicity constant (xe). Also, estimate its dissociation
energy if the force constant is 500 N/m.

Steps to solve:

1. Use the G(v) equations for v=0 and v=1 to form two equations with two
unknowns (hwe and hweXe).

2. Solve these equations.
3. Relate De to the harmonic and anharmonic terms.

2.6 Fundamental Frequencies, Overtones, and Hot Bands

* Fundamental Frequencies: Transitions from v=0 to v=1 (Av = +1). These are
typically the strongest vibrational bands.



* Overtones: Transitions from v=0 to higher levels (Av = +2, +3, etc.). These are
weaker due to anharmonicity.

* Hot Bands: Transitions originating from excited vibrational states (e.g., v=1 to
v=2). These become more significant at higher temperatures as the
population of excited states increases.

2.7 Degrees of Freedom for Polyatomic Molecules

For a non-linear molecule with N atoms, there are 3N degrees of freedom. These
are divided into:

* 3 translational degrees of freedom (motion of the center of mass).
* 3 rotational degrees of freedom (rotation about x, y, z axes).
* 3N - 6 vibrational degrees of freedom (normal modes of vibration).

For a linear molecule with N atoms, there are 3N-5 vibrational degrees of freedom.

2.8 Modes of Vibration

These are the independent ways a molecule can vibrate. Each normal mode has a
specific frequency and can be observed in the IR and Raman spectra.

2.9 Diatomic Vibrating Rotator

This model considers a molecule that can simultaneously vibrate and rotate. The
energy levels are approximated by combining vibrational and rotational energy,
leading to vibrational-rotational spectra.

E(v,)) = (Vv + 1/2)hwe - (Vv + 1/2)? hwe Xe + BJ(J+1) (for a harmonic oscillator, B is
often J-dependent in more advanced models, but this gives the basic idea).

2.10 P, Q, R Branches

In vibrational-rotational spectra, transitions involve changes in both vibrational (Av)
and rotational (A)) quantum numbers.

* R-branch: AJ = +1 (rotational quantum number increases).



* P-branch: AJ = -1 (rotational quantum number decreases).

* Q-branch: A) = 0 (rotational quantum number remains the same). This branch
is only allowed if the molecule's symmetry permits it or if there is a change in
the component of the dipole moment along the bond axis during vibration
(e.g., in symmetric top molecules). For linear molecules, the Q branch is
typically forbidden for vibrational transitions that do not involve a change in
angular momentum along the molecular axis.

The spacing between lines in the P and R branches is approximately 2B.
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