Teachers Profile
About
Best Practices
Teaching Learning
Capacity Building
Academic Activities
Certificate Courses
Awards
MOUs
Distinguished Alumni
Result
Title | View |
---|
Gallery
Student Progression
Title | View |
---|
Departmental Notices
Research
- S. K. Patra, Md. M. Shaikh, Monochromatic Sums Equal To Products Near Zero, Integers
(https://math.colgate.edu/~integers/u66/u66.pdf). - Md. M. Shaikh, S. K. Patra, M. K. Ram, Dynamics Near an Idempotent , Topology and its
Applications (ELSEVIER). (DOI:https://doi.org/10.1016/j.topol.2020.107328) - L. L. Baglini, S. K. Patra, Md. M. Shaikh, Dynamical notions along filters, New York J. Math. 29
(2023) 792-817, ISSN 1076-9803/2023(http://nyjm.albany.edu/j/2023/29-31.html) - N. Nahid, P. Das, G. Nelakanti, “Projection and multi projection methods for nonlinear integral equations on the half-line”, Journal of Computational and Applied Mathematics, Elsevier, vol- 359, pp. 119–144 (2019).
- N. Nahid, G. Nelakanti, “Convergence analysis of Galerkin and multi-Galerkin methods for linear integral equations on half-line using Laguerre polynomials”, Computational and Applied Mathematics, Springer, vol-38, pp. 182 (2019).
- N. Nahid, G. Nelakanti, “Convergence analysis of Galerkin and multi-Galerkin methods on unbounded interval using Hermite polynomials”, Applied Numerical Mathematics, Elsevier, vol-152, pp. 66–83 (2020).
- N. Nahid, G. Nelakanti, “Discrete projection methods for Hammerstein integral equations on the half-line’’ Calcolo, Springer, vol-57, pp. 1-52 (2020)
- N. Nahid, G. Nelakanti, “Convergence analysis of Galerkin and multi-Galerkin methods for nonlinear-Hammerstein integral equations on the half-line using Laguerre polynomials’’ International Journal of Computer Mathematics, Taylor & Francis, vol-99, pp. 808-836 (2021)
- R. Nigam, N. Nahid, S. Chakraborty, G. Nelakanti, Superconvergence Results for Non-linear Hammerstein Integral Equations on Unbounded Domain" Numerical Algorithm, Springer , pp. 1-37 (2023)
- P.Das, N. Nahid, G. Nelakanti, “Superconvergence of Iterated Galerkin Method for a Class of Nonlinear Fredholm Integral Equations’’ International Conference on Information Technology and Applied Mathematics, pp. 21, (2020)
- R. Nigam, N. Nahid, S. Chakraborty, G. Nelakanti, “Discrete projection methods for Fredholm–Hammerstein integral equations using Kumar and Sloan technique’’ Calcolo,Springer, vol-61,pp.1-53 (2024)
- R. Nigam, N. Nahid, G. Nelakanti, “Non-linear integral equations on unbounded domain with global polynomials’’Applied Mathematics and Computation, Elsevier, vol-471, (2024)
- Bhowmick, J., Samanta, G.P., “A Continuous Deterministic Inventory System for Deteriorating Items with Inventory – Level –Dependent time Varying Demand Rate”, Tamsui Oxford Journal of Mathematical Sciences, 23(2) (2007) 173-184.
- Bhowmick, J., Samanta, G.P., “An Order-Level Inventory Model for Items with Weibull Distribution Deterioration, Shortages and Stock-dependent Time Varying Demand”, AMSE Periodicals (D), Production Engineering and Management Organization Human and Social Problems, 30 (2) (2009) 64-77, ISSN 1240-4551.
- Bhowmick, J., Samanta, G.P., “A Deterministic Inventory System with Weibull Distribution Deterioration and Ramp Type Demand Rate”, Electronic Journal of Applied Statistical Analysis (EJASA), 3(2) (2010), 92-114, ISSN 2070 -5948.
- Bhowmick, J., “Optimal Level Product Availability and Pricing Policy for Retailer in Supply Chain of Seasonal Items with Stochastic Demand Including the Mixture of Backorder and Lost Sales, Perspectives on Management, Bi Annual Journal of Management Education Centre, Heritage Institute of Technology, 2 (06) (2010), 187-205, ISSN: 0974-7095.
- Bhowmick, J., Samanta, G.P., “A Deterministic Inventory Model of Deteriorating Items with Two Rates of Production, Shortages, and Variable Production Cycle, International Scholarly Research Network ISRN Applied Mathematics
(2011), 01-16. - Bhowmick, J., Samanta, G.P., “Optimal inventory policies for Imperfect Inventory with Price Dependent Stochastic Demand and Partially Backlogged Shortages”, Yugoslav Journal of Operations Research, 22 (2012), 199-223.
- Bhowmick, J., “Optimal Inventory Policies for Defective Inventory with Stochastic Demand”, Bulletin of Calcutta Mathematical Society, 108 (6) (2016) 493-504.
Departmental Profile
Title | View |
---|